Câu hỏi:
04/07/2023 651
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \sqrt {x - m} + \sqrt {2x - m - 1} \) xác định trên (0; +∞).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Hàm số đã cho xác định \( \Leftrightarrow \left\{ \begin{array}{l}x - m \ge 0\\2x - m - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge m\\x \ge \frac{{m + 1}}{2}\end{array} \right.\,\,\,\,\,\,\left( * \right)\)
Trường hợp 1: \(m \ge \frac{{m + 1}}{2} \Leftrightarrow m \ge 1\).
Khi đó (*) ⇔ x ≥ m.
Suy ra tập xác định của hàm số đã cho là D = [m; +∞).
Vì vậy hàm số đã cho xác định trên (0; +∞) khi và chỉ khi (0; +∞) ⊂ [m; +∞).
⇔ m ≤ 0 (mâu thuẫn vì m ≥ 1).
Trường hợp 2: \(m \le \frac{{m + 1}}{2} \Leftrightarrow m \le 1\).
Khi đó \(\left( * \right) \Leftrightarrow x \ge \frac{{m + 1}}{2}\).
Suy ra tập xác định của hàm số đã cho là \(D = \left[ {\frac{{m + 1}}{2}; + \infty } \right)\).
Vì vậy hàm số đã cho xác định trên (0; +∞) khi và chỉ khi \(\left( {0; + \infty } \right) \subset \left[ {\frac{{m + 1}}{2}; + \infty } \right)\).
\( \Leftrightarrow \frac{{m + 1}}{2} \le 0 \Leftrightarrow m \le - 1\).
So với điều kiện m ≤ 1, ta nhận m ≤ –1.
Vậy m ≤ –1 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.