Quảng cáo
Trả lời:

Lời giải
Ta có cos2x + 3sinx – 2 = 0.
⇔ –2sin2x + 3sinx – 1 = 0.
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 1\\\sin x = \frac{1}{2}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\).
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{\pi }{2} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{{39\pi }}{2}\).
\( \Leftrightarrow - \frac{1}{4} < k < \frac{{39}}{4}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (1)
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{\pi }{6} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{\pi }{6} < k2\pi < \frac{{119\pi }}{6}\).
\( \Leftrightarrow - \frac{1}{{12}} < k < \frac{{119}}{{12}}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (2)
⦁ Vì x ∈ (0; 20π) nên \[0 < \frac{{5\pi }}{6} + k2\pi < 20\pi \].
\( \Leftrightarrow - \frac{{5\pi }}{6} < k2\pi < \frac{{115\pi }}{6}\).
\( \Leftrightarrow - \frac{5}{{12}} < k < \frac{{115}}{{12}}\).
Mà k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} (3)
Từ (1), (2), (3), ta thu được số nghiệm của phương trình đã cho trên khoảng (0; 20π) là 30.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Câu 2
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.