Cho \(A = \left( {\frac{{x + 1}}{{x - 1}} + \frac{{x - 1}}{{3 - x}} + \frac{3}{{{x^2} - 4x + 3}}} \right):\frac{5}{{{x^2} - 2x - 3}}\)
a) Rút gọn A.
b) Tính giá trị của A biết 2x2 – x – 1 = 0.
Cho \(A = \left( {\frac{{x + 1}}{{x - 1}} + \frac{{x - 1}}{{3 - x}} + \frac{3}{{{x^2} - 4x + 3}}} \right):\frac{5}{{{x^2} - 2x - 3}}\)
a) Rút gọn A.
b) Tính giá trị của A biết 2x2 – x – 1 = 0.
Quảng cáo
Trả lời:

Lời giải
a) Với x ≠ ± 1, x ≠ 3 ta có:
\(A = \left( {\frac{{x + 1}}{{x - 1}} + \frac{{x - 1}}{{3 - x}} + \frac{3}{{{x^2} - 4x + 3}}} \right):\frac{5}{{{x^2} - 2x - 3}}\)
\( = \left[ {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x - 3}} + \frac{3}{{\left( {x - 1} \right)\left( {x - 3} \right)}}} \right]:\frac{5}{{\left( {x + 1} \right)\left( {x - 3} \right)}}\)
\( = \frac{{\left( {x + 1} \right)\left( {x - 3} \right) - {{\left( {x - 1} \right)}^2} + 3}}{{\left( {x - 1} \right)\left( {x - 3} \right)}}.\frac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{5}\)
\( = \frac{{{x^2} - 2x - 3 - {x^2} + 2x - 1 + 3}}{{x - 1}}.\frac{{x + 1}}{5}\)
\( = \frac{{ - 1}}{{x - 1}}.\frac{{x + 1}}{5}\)
\( = \frac{{ - x - 1}}{{5\left( {x - 1} \right)}}\).
Vậy với x ≠ ± 1, x ≠ 3 thì \(A = \frac{{ - x - 1}}{{5\left( {x - 1} \right)}}\).
b) Ta có: 2x2 – x – 1 = 0
Û 2x2 – 2x + x – 1 = 0
Û 2x(x – 1) + (x – 1) = 0
Û (x – 1)(2x + 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\,\,\,\left( {ktm} \right)\\x = - \frac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.\)
Thay \(x = - \frac{1}{2}\) vào biểu thức A ta được:
\(A = \frac{{\frac{1}{2} - 1}}{{5\left( { - \frac{1}{2} - 1} \right)}} = \frac{{\frac{{ - 1}}{2}}}{{5.\frac{{ - 3}}{2}}} = \frac{{ - 1}}{{ - 15}} = \frac{1}{{15}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Câu 2
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.