Phương trình \({9^{{x^2} + x - 1}} - {10.3^{{x^2} + x - 2}} + 1 = 0\) có tập nghiệm là
Quảng cáo
Trả lời:

Lời giải
Đáp án đúng là: C
Ta có \({9^{{x^2} + x - 1}} - {10.3^{{x^2} + x - 2}} + 1 = 0\).
\( \Leftrightarrow {9^{{x^2} + x - 1}} - \frac{{10}}{3}{.3^{{x^2} + x - 1}} + 1 = 0\) (1)
Đặt \(t = {3^{{x^2} + x - 1}}\).
Khi đó phương trình (1) tương đương với: \({t^2} - \frac{{10}}{3}t + 1 = 0\).
\( \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = \frac{1}{3}\end{array} \right.\)
Với t = 3, ta có \({3^{{x^2} + x - 1}} = 3 \Leftrightarrow {x^2} + x - 1 = 1\).
⇔ x2 + x – 2 = 0 ⇔ x = 1 hoặc x = –2.
Với \(t = \frac{1}{3}\), ta có \({3^{{x^2} + x - 1}} = \frac{1}{3} = {3^{ - 1}} \Leftrightarrow {x^2} + x - 1 = - 1\).
⇔ x2 + x = 0 ⇔ x = 0 hoặc x = –1.
Vậy tập nghiệm của phương trình đã cho là: S = {–2; –1; 0; 1}.
Do đó ta chọn phương án C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Câu 2
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.