Câu hỏi:

13/07/2024 31,366

Huyết áp của mỗi người thay đổi trong ngày. Giả sử huyết áp tâm trương (tức là áp lực máu lên thành động mạch khi tim giãn ra) của một người nào đó ở trạng thái nghỉ ngơi tại thời điểm t được cho bởi công thức:

B(t) = 80 + 7sin\(\frac{{\pi t}}{{12}}\),

trong đó t là số giờ tính từ lúc nửa đêm và B(t) tính bằng mmHg (milimét thủy ngân). Tìm huyết áp tâm trương của người này vào các thời điểm sau:

a) 6 giờ sáng;

b) 10 giờ 30 phút sáng;

c) 12 giờ trưa;

d) 8 giờ tối.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Thời điểm 6 giờ sáng, tức t = 6, khi đó B(6) = 80 + 7sin\(\frac{{6\pi }}{{12}}\) = 87.

Vậy huyết áp tâm trương của người đó vào lúc 6 giờ sáng là 87 mmHg.

b) Thời điểm 10 giờ 30 phút sáng, tức t = 10,5, khi đó B(10,5) = 80 + 7sin\(\frac{{10,5\pi }}{{12}}\) ≈ 82,68.

Vậy huyết áp tâm trương của người đó vào lúc 10 giờ 30 phút sáng xấp xỉ 82,68 mmHg.

c) Thời điểm 12 giờ trưa, tức t = 12, khi đó B(12) = 80 + 7sin\(\frac{{12\pi }}{{12}}\) = 80.

Vậy huyết áp tâm trương của người đó vào lúc 12 giờ trưa là 80 mmHg.

d) Thời điểm 8 giờ tối hay 20 giờ, tức t = 20, khi đó B(20) = 80 + 7sin\(\frac{{20\pi }}{{12}}\) = \(\frac{{160 - 7\sqrt 3 }}{2}.\)

Vậy huyết áp tâm trương của người đó vào lúc 8 giờ tối là \(\frac{{160 - 7\sqrt 3 }}{2}\) mmHg.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Vì 0 < α < \(\frac{\pi }{2}\) nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{2\sqrt 6 }}{5}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{2\sqrt 6 }} = \frac{{\sqrt 6 }}{{12}}\).

b) Vì \(\frac{\pi }{2} < \alpha < \pi \) nên cos α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{ - \frac{{\sqrt 5 }}{3}}} = - \frac{2}{{\sqrt 5 }} = - \frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{2\sqrt 5 }}{5}}} = - \frac{{\sqrt 5 }}{2}\).

c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).

Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên cos α < 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra

\(\cos \alpha = - \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = - \sqrt {\frac{1}{{1 + {{\left( {\sqrt 5 } \right)}^2}}}} = - \frac{{\sqrt 6 }}{6}\).

Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = \sqrt 5 .\left( { - \frac{{\sqrt 6 }}{6}} \right) = - \frac{{\sqrt {30} }}{6}\).

d) Ta có: \(\tan \alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{ - \frac{1}{{\sqrt 2 }}}} = - \sqrt 2 \).

Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \) nên cos α > 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra

\(\cos \alpha = \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = \sqrt {\frac{1}{{1 + {{\left( { - \sqrt 2 } \right)}^2}}}} = \frac{{\sqrt 3 }}{3}\).

Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = - \sqrt 2 .\left( {\frac{{\sqrt 3 }}{3}} \right) = - \frac{{\sqrt 6 }}{3}\).

Lời giải

Lời giải:

Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên sin α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

\(\sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {{\left( { - \frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).

Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{{\sqrt 5 }}{3}}}{{ - \frac{2}{3}}} = \frac{{\sqrt 5 }}{2}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{\sqrt 5 }}{2}}} = \frac{2}{{\sqrt 5 }} = \frac{{2\sqrt 5 }}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP