Một người đi xe đạp với vận tốc không đổi, biết rằng bánh xe đạp quay được 11 vòng trong 5 giây.
a) Tính góc (theo độ và rađian) mà bánh xe quay được trong 1 giây.
b) Tính độ dài quãng đường mà người đi xe đã đi được trong 1 phút, biết rằng đường kính của bánh xe đạp là 680 mm.
Một người đi xe đạp với vận tốc không đổi, biết rằng bánh xe đạp quay được 11 vòng trong 5 giây.
a) Tính góc (theo độ và rađian) mà bánh xe quay được trong 1 giây.
b) Tính độ dài quãng đường mà người đi xe đã đi được trong 1 phút, biết rằng đường kính của bánh xe đạp là 680 mm.
Quảng cáo
Trả lời:
Lời giải:
a) Trong 1 giây, bánh xe đạp quay được \(\frac{{11}}{5}\) vòng.
Vì một vòng ứng với góc bằng 360° nên góc mà bánh quay xe quay được trong 1 giây là
\(\frac{{11}}{5} \cdot 360 = 792^\circ \).
Vì một vòng ứng với góc bằng 2π nên góc mà bánh quay xe quay được trong 1 giây là
\(\frac{{11}}{5} \cdot 2\pi = \frac{{22\pi }}{5}\) (rad).
b) Ta có: 1 phút = 60 giây.
Trong 1 phút bánh xe quay được \(60 \cdot \frac{{11}}{5} = 132\) vòng.
Chu vi của bánh xe đạp là: C = 680π (mm).
Quãng đường mà người đi xe đạp đã đi được trong một phút là
680π . 132 = 89 760π (mm) = 89,76π (m).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì 0 < α < \(\frac{\pi }{2}\) nên sin α > 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
\(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{2\sqrt 6 }}{5}\).
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{2\sqrt 6 }} = \frac{{\sqrt 6 }}{{12}}\).
b) Vì \(\frac{\pi }{2} < \alpha < \pi \) nên cos α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra
\(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{2}{3}} \right)}^2}} = - \frac{{\sqrt 5 }}{3}\).
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{ - \frac{{\sqrt 5 }}{3}}} = - \frac{2}{{\sqrt 5 }} = - \frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{2\sqrt 5 }}{5}}} = - \frac{{\sqrt 5 }}{2}\).
c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).
Vì \(\pi < \alpha < \frac{{3\pi }}{2}\) nên cos α < 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra
\(\cos \alpha = - \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = - \sqrt {\frac{1}{{1 + {{\left( {\sqrt 5 } \right)}^2}}}} = - \frac{{\sqrt 6 }}{6}\).
Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = \sqrt 5 .\left( { - \frac{{\sqrt 6 }}{6}} \right) = - \frac{{\sqrt {30} }}{6}\).
d) Ta có: \(\tan \alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{ - \frac{1}{{\sqrt 2 }}}} = - \sqrt 2 \).
Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \) nên cos α > 0. Mặt khác, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\) suy ra
\(\cos \alpha = \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} = \sqrt {\frac{1}{{1 + {{\left( { - \sqrt 2 } \right)}^2}}}} = \frac{{\sqrt 3 }}{3}\).
Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cot \alpha = - \sqrt 2 .\left( {\frac{{\sqrt 3 }}{3}} \right) = - \frac{{\sqrt 6 }}{3}\).
Lời giải
Lời giải:
a) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng \(\frac{{2\pi }}{3}\) được xác định trong hình sau:

b) Ta có: \( - \frac{{11\pi }}{4} = - \left( {\frac{{3\pi }}{4} + 2\pi } \right)\).
Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng \( - \frac{{11\pi }}{4}\) được xác định trong hình sau:

c) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng 150° được xác định trong hình sau:

d) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng – 225° được xác định trong hình sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.