Câu hỏi:
13/07/2024 767

a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng [0; 2π).
b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.
a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng [0; 2π).
b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.
Quảng cáo
Trả lời:
Lời giải:
a) Từ Hình 1.19, nhận thấy hai điểm M, M' lần lượt biểu diễn các góc \(\frac{\pi }{6}\) và \(\pi - \frac{\pi }{6} = \frac{{5\pi }}{6}\), lại có tung độ của điểm M và M' đều bằng \(\frac{1}{2}\) nên theo định nghĩa giá trị lượng giác, ta có \(\sin \frac{\pi }{6} = \frac{1}{2}\) và \(\sin \frac{{5\pi }}{6} = \frac{1}{2}\).
Vậy trong nửa khoảng [0; 2π), phương trình \(\sin x = \frac{1}{2}\) có hai nghiệm là \(x = \frac{\pi }{6}\), \(x = \frac{{5\pi }}{6}\).
b) Vì hàm số sin có chu kì tuần hoàn là 2π nên phương trình đã cho có công thức nghiệm là \(x = \frac{\pi }{6} + k2\pi ,\,k \in \mathbb{Z}\) và \(x = \frac{{5\pi }}{6} + k2\pi ,\,k \in \mathbb{Z}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\)
\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},\,\,k \in \mathbb{Z}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8}.
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Lời giải
Lời giải:
Vì v0 = 500 m/s, g = 9,8 m/s2 nên ta có phương trình quỹ đạo của quả đạn là
\(y = \frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) hay \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \).
a) Quả đạn chạm đất khi y = 0, khi đó \(\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha = 0\)
\( \Leftrightarrow x\left( {\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}x + \tan \alpha } \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000{{\cos }^2}\alpha .\tan \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000\cos \alpha .\sin \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{1\,250\,000\sin 2\alpha }}{{49}}\end{array} \right.\)
Loại x = 0 (đạn pháo chưa được bắn).
Vậy tầm xa mà quả đạn đạt tới là \(x = \frac{{1250000\sin 2\alpha }}{{49}}\) (m).
b) Để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m thì x = 22 000 m.
Khi đó \(\frac{{1250000\sin 2\alpha }}{{49}} = 22\,000\)⇔ sin 2α = \(\frac{{539}}{{625}}\)
\[ \Leftrightarrow \left[ \begin{array}{l}\alpha \approx 29^\circ 47'36''\\\alpha \approx 60^\circ 12'23''\end{array} \right.\,\,\].
c) Hàm số \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) là một hàm số bậc hai có đồ thị là một parabol có tọa độ đỉnh I(xI; yI) là
\(\left\{ \begin{array}{l}{x_I} = - \frac{b}{{2a}} = - \frac{{\tan \alpha }}{{2.\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}}} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = f\left( {{x_I}} \right) = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{\left( {\frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}} \right)^2} + \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\tan \alpha \end{array} \right.\)
Hay \(\left\{ \begin{array}{l}{x_I} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\end{array} \right.\)
Do đó, độ cao lớn nhất của quả đạn là \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\).
Ta có \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}} \le \frac{{625\,000}}{{49}}\), dấu “=” xảy ra khi sin2 α = 1 hay α = 90°.
Như vậy góc bắn α = 90° thì quả đan đạt độ cao lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.