Câu hỏi:
13/07/2024 3,049
Sử dụng máy tính cầm tay, tìm số đo độ và rađian của góc α, biết:
a) cos α = – 0,75;
b) tan α = 2,46;
c) cot α = – 6,18.
Sử dụng máy tính cầm tay, tìm số đo độ và rađian của góc α, biết:
a) cos α = – 0,75;
b) tan α = 2,46;
c) cot α = – 6,18.
Quảng cáo
Trả lời:
Lời giải:
a) cos α = – 0,75
+ Để tìm số đo độ của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: 138°35'25,36''.
Vậy α ≈ 138°35'26".
+ Để tìm số đo rađian của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: 2,418858406.
Vậy α ≈ 2,41886 rad.
b) tan α = 2,46
+ Để tìm số đo độ của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: 67°52'41,01".
Vậy α ≈ 67°52'41".
+ Để tìm số đo rađian của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: 1,184695602.
Vậy α ≈ 1,1847 rad.
c) cot α = – 6,18
+ Để tìm số đo độ của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: – 9°11'29,38".
Vậy α ≈ – 9°11'30".
+ Để tìm số đo rađian của góc α, ta bấm phím như sau:
Màn hình hiện kết quả là: – 0,1604218219.
Vậy α ≈ – 0,16042 rad.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\)
\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},\,\,k \in \mathbb{Z}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8}.
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Lời giải
Lời giải:
Vì v0 = 500 m/s, g = 9,8 m/s2 nên ta có phương trình quỹ đạo của quả đạn là
\(y = \frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) hay \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \).
a) Quả đạn chạm đất khi y = 0, khi đó \(\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha = 0\)
\( \Leftrightarrow x\left( {\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}x + \tan \alpha } \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000{{\cos }^2}\alpha .\tan \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000\cos \alpha .\sin \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{1\,250\,000\sin 2\alpha }}{{49}}\end{array} \right.\)
Loại x = 0 (đạn pháo chưa được bắn).
Vậy tầm xa mà quả đạn đạt tới là \(x = \frac{{1250000\sin 2\alpha }}{{49}}\) (m).
b) Để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m thì x = 22 000 m.
Khi đó \(\frac{{1250000\sin 2\alpha }}{{49}} = 22\,000\)⇔ sin 2α = \(\frac{{539}}{{625}}\)
\[ \Leftrightarrow \left[ \begin{array}{l}\alpha \approx 29^\circ 47'36''\\\alpha \approx 60^\circ 12'23''\end{array} \right.\,\,\].
c) Hàm số \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) là một hàm số bậc hai có đồ thị là một parabol có tọa độ đỉnh I(xI; yI) là
\(\left\{ \begin{array}{l}{x_I} = - \frac{b}{{2a}} = - \frac{{\tan \alpha }}{{2.\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}}} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = f\left( {{x_I}} \right) = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{\left( {\frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}} \right)^2} + \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\tan \alpha \end{array} \right.\)
Hay \(\left\{ \begin{array}{l}{x_I} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\end{array} \right.\)
Do đó, độ cao lớn nhất của quả đạn là \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\).
Ta có \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}} \le \frac{{625\,000}}{{49}}\), dấu “=” xảy ra khi sin2 α = 1 hay α = 90°.
Như vậy góc bắn α = 90° thì quả đan đạt độ cao lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.