Câu hỏi:
13/07/2024 3,790Quảng cáo
Trả lời:
Lời giải:
Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó song song với nhau.
Chứng minh: Cho ba mặt phẳng (α), (β), (γ) phân biệt có (α) // (β), (β) // (γ). Ta chứng minh (α) // (γ).
Trên mặt phẳng (α) ta có hai đường thẳng cắt nhau a1 và b1. Vì (α) // (β) suy ra a1 // (β); b1 // (β).
Trên mp(β), kẻ a2 // a1, b2 // b1. Vì a1 và b1 cắt nhau suy ra a2 và b2 cũng cắt nhau, (β) // (γ) nên a2 // (γ), b2 // (γ)
Trên mp (γ), kẻ a3 // a2, b3 // b2. Vì a2 và b2 cắt nhau suy ra a3 và b3 cắt nhau
Ta có: a3 // a1 (vì cùng song song với a2), suy ra a3 // (α)
b3 // b1 (vì cùng song song với b2), suy ra b3 // (α)
Do đó (γ) // (α).
Vậy nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Trong không gian cho ba mặt phẳng phân biệt (P), (Q), (R). Những mệnh đề nào sau đây là đúng?
a) Nếu (P) chứa một đường thẳng song song với (Q) thì (P) song song với (Q).
b) Nếu (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q).
c) Nếu (P) và (Q) song song với (R) thì (P) song song với (Q).
d) Nếu (P) và (Q) cắt (R) thì (P) và (Q) song song với nhau.
Câu 3:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'.
a) Chứng minh rằng tứ giác AGG'A' là hình bình hành.
b) Chứng minh rằng AGC.A'G'C' là hình lăng trụ.
Câu 4:
Câu 5:
Câu 6:
Câu 7:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận