Câu hỏi:
13/07/2024 3,863
Nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau hay không? Vì sao?
Quảng cáo
Trả lời:
Lời giải:
Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó song song với nhau.
Chứng minh: Cho ba mặt phẳng (α), (β), (γ) phân biệt có (α) // (β), (β) // (γ). Ta chứng minh (α) // (γ).
Trên mặt phẳng (α) ta có hai đường thẳng cắt nhau a1 và b1. Vì (α) // (β) suy ra a1 // (β); b1 // (β).
Trên mp(β), kẻ a2 // a1, b2 // b1. Vì a1 và b1 cắt nhau suy ra a2 và b2 cũng cắt nhau, (β) // (γ) nên a2 // (γ), b2 // (γ)
Trên mp (γ), kẻ a3 // a2, b3 // b2. Vì a2 và b2 cắt nhau suy ra a3 và b3 cắt nhau
Ta có: a3 // a1 (vì cùng song song với a2), suy ra a3 // (α)
b3 // b1 (vì cùng song song với b2), suy ra b3 // (α)
Do đó (γ) // (α).
Vậy nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì hai mặt phẳng đó có song song với nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.
Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).
Tương tự, ta chứng minh được NP // BC, suy ra NP song song với mặt phẳng (ABC).
Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.
Lời giải
Lời giải:
a) Mệnh đề a) là mệnh đề sai vì hai mặt phẳng (P) và (Q) có thể cắt nhau theo giao tuyến b song song với đường thẳng a nằm trong (P).
b) Mệnh đề b) là mệnh đề sai vì thiếu điều kiện hai đường thẳng đó phải cắt nhau.
c) Mệnh đề c) là mệnh đề đúng vì (P) và (Q) là hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba là mặt phẳng (R) thì (P) và (Q) song song với nhau.
d) Mệnh đề d) là mệnh đề sai vì (P) và (Q) cắt (R) thì (P) và (Q) có thể cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.