Câu hỏi:
13/07/2024 1,470
Cho ba mặt phẳng (P), (Q) và (R) đôi một song song. Hai đường thẳng phân biệt d và d' cắt ba mặt phẳng lần lượt tại A, B, C và A', B', C' (C khác C'). Gọi D là giao điểm của AC' và (Q) (H.4.48).

a) Các cặp đường thẳng BD và CC', B'D và AA' có song song với nhau không?
b) Các tỉ số \(\frac{{AB}}{{BC}},\,\,\frac{{AD}}{{DC'}}\) và \(\frac{{A'B'}}{{B'C'}}\) có bằng nhau không?
Cho ba mặt phẳng (P), (Q) và (R) đôi một song song. Hai đường thẳng phân biệt d và d' cắt ba mặt phẳng lần lượt tại A, B, C và A', B', C' (C khác C'). Gọi D là giao điểm của AC' và (Q) (H.4.48).
a) Các cặp đường thẳng BD và CC', B'D và AA' có song song với nhau không?
b) Các tỉ số \(\frac{{AB}}{{BC}},\,\,\frac{{AD}}{{DC'}}\) và \(\frac{{A'B'}}{{B'C'}}\) có bằng nhau không?
Quảng cáo
Trả lời:
Lời giải:
a) Mặt phẳng (ACC') lần lượt cắt hai mặt phẳng song song (Q) và (R) theo hai giao tuyến BD và CC'. Do đó, BD // CC'.
Mặt phẳng AC'A' lần lượt cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến AA' và B'D. Do đó, B'D // AA'.
b) Xét tam giác ACC' có BD // CC', theo định lý Thalés trong tam giác ta suy ra \(\frac{{AB}}{{BC}} = \frac{{AD}}{{DC'}}\)
Tương tự, xét tam giác AA'C' có B'D // AA', ta suy ra \(\frac{{AD}}{{DC'}} = \frac{{A'B'}}{{B'C'}}\).
Vậy \(\frac{{AB}}{{BC}} = \frac{{AD}}{{DC'}} = \frac{{A'B'}}{{B'C'}}\).Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.
Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).
Tương tự, ta chứng minh được NP // BC, suy ra NP song song với mặt phẳng (ABC).
Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.
Lời giải
Lời giải:
a) Mệnh đề a) là mệnh đề sai vì hai mặt phẳng (P) và (Q) có thể cắt nhau theo giao tuyến b song song với đường thẳng a nằm trong (P).
b) Mệnh đề b) là mệnh đề sai vì thiếu điều kiện hai đường thẳng đó phải cắt nhau.
c) Mệnh đề c) là mệnh đề đúng vì (P) và (Q) là hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba là mặt phẳng (R) thì (P) và (Q) song song với nhau.
d) Mệnh đề d) là mệnh đề sai vì (P) và (Q) cắt (R) thì (P) và (Q) có thể cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.