Câu hỏi:
13/07/2024 33,418Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số \(\frac{{SK}}{{SC}}\) bằng
A. \(\frac{1}{2}\).
B. \(\frac{1}{3}\).
C. \(\frac{1}{4}\).
D. \(\frac{2}{3}\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
Đáp án đúng là: B
Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Trong mặt phẳng (SBD), SO cắt MN tại J.
Trong mặt phẳng (SAC), AJ cắt SC tại K.
Vì J thuộc MN nên J thuộc mặt phẳng (AMN) nên K thuộc AJ thì K thuộc mặt phẳng (AMN). Do đó K là giao điểm của mặt phẳng (AMN) và đường thẳng SC.
Tam giác SBD có M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD, suy ra MN // BD hay NJ // DO. Xét tam giác SDO có NJ // DO và N là trung điểm của SD nên suy ra J là trung điểm của SO.
Trong mặt phẳng (SAC), từ O kẻ OE song song với AK (E thuộc SC).
Xét tam giác SOE có JK // OE (do AK // OE), theo định lí Thalés ta có: \(\frac{{SK}}{{SE}} = \frac{{SJ}}{{SO}} = \frac{1}{2}\).
Do đó, K là trung điểm của SE.
Xét tam giác CAK có OE // AK, theo định lí Thalés ta có: \(\frac{{CE}}{{CK}} = \frac{{CO}}{{CA}} = \frac{1}{2}\). Do đó, E là trung điểm của CK.
Vậy SK = KE = CE, suy ra \(\frac{{SK}}{{SC}} = \frac{1}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:
a) (SAD) và (SBC);
b) (SAB) và (SCD);
c) (SAC) và (SBD).
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.
a) Chứng minh rằng GK // (ABCD).
b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Đường thẳng SB song song với mặt phẳng
A. (CDM).
B. (ACM).
C. (ADM).
D. (ACD).
Câu 4:
Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là
A. chéo nhau.
B. cắt nhau.
C. song song.
D. trùng nhau.
Câu 5:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA'.
a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B'C.
b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C. Tính tỉ số \(\frac{{KB'}}{{KC}}\).
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN.
a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số \(\frac{{SK}}{{SD}}\).
b) Chứng minh rằng MN // (SAD).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!