Câu hỏi:

13/07/2024 14,430

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số \(\frac{{SK}}{{SC}}\) bằng

A. \(\frac{1}{2}\).

B. \(\frac{1}{3}\).

C. \(\frac{1}{4}\).

D. \(\frac{2}{3}\).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đáp án đúng là: B

Media VietJack

Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Trong mặt phẳng (SBD), SO cắt MN tại J.

Trong mặt phẳng (SAC), AJ cắt SC tại K. 

Vì J thuộc MN nên J thuộc mặt phẳng (AMN) nên K thuộc AJ thì K thuộc mặt phẳng (AMN). Do đó K là giao điểm của mặt phẳng (AMN) và đường thẳng SC.

Tam giác SBD có M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD, suy ra MN // BD hay NJ // DO. Xét tam giác SDO có NJ // DO và N là trung điểm của SD nên suy ra J là trung điểm của SO.

Trong mặt phẳng (SAC), từ O kẻ OE song song với AK (E thuộc SC).

Xét tam giác SOE có JK // OE (do AK // OE), theo định lí Thalés ta có: \(\frac{{SK}}{{SE}} = \frac{{SJ}}{{SO}} = \frac{1}{2}\).

Do đó, K là trung điểm của SE.

Xét tam giác CAK có OE // AK, theo định lí Thalés ta có: \(\frac{{CE}}{{CK}} = \frac{{CO}}{{CA}} = \frac{1}{2}\). Do đó, E là trung điểm của CK.

Vậy SK = KE = CE, suy ra \(\frac{{SK}}{{SC}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.

a) Chứng minh rằng GK // (ABCD).

b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

Xem đáp án » 13/07/2024 13,309

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:

a) (SAD) và (SBC);

b) (SAB) và (SCD);

c) (SAC) và (SBD).

Xem đáp án » 13/07/2024 13,235

Câu 3:

Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là

A. chéo nhau.

B. cắt nhau.

C. song song.

D. trùng nhau.

Xem đáp án » 13/07/2024 7,794

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Đường thẳng SB song song với mặt phẳng

A. (CDM).

B. (ACM).

C. (ADM).

D. (ACD).

Xem đáp án » 13/07/2024 7,458

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN.

a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số \(\frac{{SK}}{{SD}}\).

b) Chứng minh rằng MN // (SAD). 

Xem đáp án » 13/07/2024 3,226

Câu 6:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA'.

a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B'C.

b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C. Tính tỉ số \(\frac{{KB'}}{{KC}}\).

Xem đáp án » 13/07/2024 2,344

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn