Câu hỏi:

13/07/2024 12,126

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA'.

a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B'C.

b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C. Tính tỉ số \(\frac{{KB'}}{{KC}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) Trong mặt phẳng (ABB'A'), gọi D là giao điểm của PM và BB'.

Vì D thuộc BB' nên D thuộc mặt phẳng (BCC'B'), N thuộc BC nên N thuộc mặt phẳng (BCC'B'), do đó trong mặt phẳng (BCC'B') nối D với N, đường thẳng DN cắt B'C tại K.

Vì D thuộc PM nên D thuộc mặt phẳng (MNP), do đó DN nằm trong mặt phẳng (MNP).

Mà K thuộc DN nên K thuộc mặt phẳng (MNP).

Do vậy, K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C.

b) Xét tam giác A'AB có P, M lần lượt là trung điểm của các cạnh AA', AB nên PM là đường trung bình của tam giác A'AB, suy ra PM // A'B hay PD // A'B.

Lại có A'P // BD (vì AA' // BB' do nó là các cạnh bên của hình lăng trụ tam giác ABC.A'B'C').

Do đó, tứ giác A'PDB là hình bình hành. Suy ra A'P = BD.

Mà P là trung điểm của AA' nên A'P = \(\frac{1}{2}\)AA', suy ra BD = \(\frac{1}{2}\)AA'.

Lại có AA' = BB' (do ABC.A'B'C' là hình lăng trụ tam giác).

Từ đó suy ra BD = \(\frac{1}{2}\)BB' (1) \[\frac{{BD}}{{B'D}} = \frac{1}{3}\] (2).

Gọi E là trung điểm của B'C. Vì N là trung điểm của BC, do đó EN là đường trung bình của tam giác BB'C, suy ra EN // BB' và EN = \(\frac{1}{2}\)BB' (3).

 Từ (1) và (3) suy ra EN = BD (4).

Từ (2) và (4) suy ra \[\frac{{EN}}{{B'D}} = \frac{1}{3}\].

Xét tam giác KDB' có EN // B'D (vì EN // BB'), theo định lí Thalés ta có:

\(\frac{{KE}}{{KB'}} = \frac{{EN}}{{B'D}} = \frac{1}{3}\).

Suy ra KE = \(\frac{1}{3}\)KB' KE = \(\frac{1}{2}\)EB'.

Mà EB' = EC (do E là trung điểm của B'C).

Do đó, KE = \[\frac{1}{2}EC\]. Suy ra K là trung điểm của EC. Khi đó KC = \(\frac{1}{2}EC\).

Mà EC = \(\frac{1}{2}\)B'C. Suy ra KC = \[\frac{1}{2}.\frac{1}{2}B'C = \frac{1}{4}B'C\]. Từ đó suy ra KC = \(\frac{1}{3}\)KB'.

Vậy \(\frac{{KB'}}{{KC}} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Đáp án đúng là: B

Media VietJack

Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Trong mặt phẳng (SBD), SO cắt MN tại J.

Trong mặt phẳng (SAC), AJ cắt SC tại K. 

Vì J thuộc MN nên J thuộc mặt phẳng (AMN) nên K thuộc AJ thì K thuộc mặt phẳng (AMN). Do đó K là giao điểm của mặt phẳng (AMN) và đường thẳng SC.

Tam giác SBD có M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD, suy ra MN // BD hay NJ // DO. Xét tam giác SDO có NJ // DO và N là trung điểm của SD nên suy ra J là trung điểm của SO.

Trong mặt phẳng (SAC), từ O kẻ OE song song với AK (E thuộc SC).

Xét tam giác SOE có JK // OE (do AK // OE), theo định lí Thalés ta có: \(\frac{{SK}}{{SE}} = \frac{{SJ}}{{SO}} = \frac{1}{2}\).

Do đó, K là trung điểm của SE.

Xét tam giác CAK có OE // AK, theo định lí Thalés ta có: \(\frac{{CE}}{{CK}} = \frac{{CO}}{{CA}} = \frac{1}{2}\). Do đó, E là trung điểm của CK.

Vậy SK = KE = CE, suy ra \(\frac{{SK}}{{SC}} = \frac{1}{3}\).

Lời giải

Lời giải:

Media VietJack

a) Ta có: ABCD là hình thang có hai đáy AB và CD. Trong mặt phẳng (ABCD), gọi F là giao điểm của AD và BC. Khi đó F thuộc AD nên F thuộc mặt phẳng (SAD), F thuộc BC nên F thuộc mặt phẳng (SBC), vậy F là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Lại có S là một điểm chung khác của hai mặt phẳng (SAD) và (SBC).

Do vây, SF là giao tuyến của hai mặt phẳng (SAD) và (SBC).

b) Hai mặt phẳng (SAB) và (SCD) lần lượt chứa hai đường thẳng AB và CD song song với nhau. Khi đó giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung S và song song với AB, CD.

Qua S, vẽ đường thẳng d song song với AB, CD.

Vậy d là giao tuyến của hai mặt phẳng (SAB) và (SCD).

c) Trong mặt phẳng (ABCD), gọi E là giao điểm của AC và BD. Vì E thuộc AC nên E thuộc mặt phẳng (SAC), vì E thuộc BD nên E thuộc mặt phẳng (SBD). Do vậy, E là một điểm chung của hai mặt phẳng (SAC) và (SBD).

Lại có S là một điểm chung khác của hai mặt phẳng (SAC) và (SBD).

Vậy SE là giao tuyến của hai mặt phẳng (SAC) và (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP