Câu hỏi:

13/07/2024 10,416

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN.

a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số \(\frac{{SK}}{{SD}}\).

b) Chứng minh rằng MN // (SAD). 

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) Trong mặt phẳng (SCD), từ M kẻ MK song song với CD (K thuộc SD).

Vì CD // AB (ABCD là hình bình hành) nên MK // AB. Do đó, MK nằm trong mặt phẳng (ABM) hay K thuộc mặt phẳng (ABM). Mà K thuộc SD, do vậy K là giao điểm của mặt phẳng (ABM) với đường thẳng SD.

Xét tam giác SCD có KM // CD, theo định lí Thalés ta có: \(\frac{{SK}}{{SD}} = \frac{{SM}}{{SC}} = \frac{{KM}}{{CD}}\).

Mà CM = 2SM, suy ra \(\frac{{SM}}{{SC}} = \frac{1}{3}\).

Vậy \(\frac{{SK}}{{SD}} = \frac{1}{3}\).

b) Từ câu a ta suy ra \(\frac{{KM}}{{CD}} = \frac{1}{3}\).

Mà BN = 2AN, suy ra \(\frac{{AN}}{{AB}} = \frac{1}{3}\).

Do đó, \(\frac{{AN}}{{AB}} = \frac{{KM}}{{CD}}\), mà AB = CD (do ABCD là hình bình hành) nên AN = KM.

Mà KM // AN (do KM // AB).

Xét tứ giác ANMK có KM = AN và KM // AN nên tứ giác ANMK là hình bình hành.

Suy ra AK // MN.

Vì K thuộc SD nên K thuộc mặt phẳng (SAD), suy ra AK nằm trong mặt phẳng (SAD).

Khi đó đường thẳng MN song song với đường thẳng AK và đường thẳng AK nằm trong mặt phẳng (SAD). Vậy MN song song với mặt phẳng (SAD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD; K là giao điểm của mặt phẳng (AMN) và đường thẳng SC. Tỉ số \(\frac{{SK}}{{SC}}\) bằng

A. \(\frac{1}{2}\).

B. \(\frac{1}{3}\).

C. \(\frac{1}{4}\).

D. \(\frac{2}{3}\).

Xem đáp án » 13/07/2024 33,419

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:

a) (SAD) và (SBC);

b) (SAB) và (SCD);

c) (SAC) và (SBD).

Xem đáp án » 13/07/2024 27,980

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.

a) Chứng minh rằng GK // (ABCD).

b) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.

Xem đáp án » 13/07/2024 24,286

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Đường thẳng SB song song với mặt phẳng

A. (CDM).

B. (ACM).

C. (ADM).

D. (ACD).

Xem đáp án » 13/07/2024 18,512

Câu 5:

Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí tương đối của hai đường thẳng a và b là

A. chéo nhau.

B. cắt nhau.

C. song song.

D. trùng nhau.

Xem đáp án » 13/07/2024 14,575

Câu 6:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA'.

a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B'C.

b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B'C. Tính tỉ số \(\frac{{KB'}}{{KC}}\).

Xem đáp án » 13/07/2024 10,850

Bình luận


Bình luận
Vietjack official store