Câu hỏi:
13/07/2024 10,817Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC và cạnh AB lần lượt lấy điểm M và N sao cho CM = 2SM và BN = 2AN.
a) Xác định giao điểm K của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số \(\frac{{SK}}{{SD}}\).
b) Chứng minh rằng MN // (SAD).
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài tập cuối chương IV có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Trong mặt phẳng (SCD), từ M kẻ MK song song với CD (K thuộc SD).
Vì CD // AB (ABCD là hình bình hành) nên MK // AB. Do đó, MK nằm trong mặt phẳng (ABM) hay K thuộc mặt phẳng (ABM). Mà K thuộc SD, do vậy K là giao điểm của mặt phẳng (ABM) với đường thẳng SD.
Xét tam giác SCD có KM // CD, theo định lí Thalés ta có: \(\frac{{SK}}{{SD}} = \frac{{SM}}{{SC}} = \frac{{KM}}{{CD}}\).
Mà CM = 2SM, suy ra \(\frac{{SM}}{{SC}} = \frac{1}{3}\).
Vậy \(\frac{{SK}}{{SD}} = \frac{1}{3}\).
b) Từ câu a ta suy ra \(\frac{{KM}}{{CD}} = \frac{1}{3}\).
Mà BN = 2AN, suy ra \(\frac{{AN}}{{AB}} = \frac{1}{3}\).
Do đó, \(\frac{{AN}}{{AB}} = \frac{{KM}}{{CD}}\), mà AB = CD (do ABCD là hình bình hành) nên AN = KM.
Mà KM // AN (do KM // AB).
Xét tứ giác ANMK có KM = AN và KM // AN nên tứ giác ANMK là hình bình hành.
Suy ra AK // MN.
Vì K thuộc SD nên K thuộc mặt phẳng (SAD), suy ra AK nằm trong mặt phẳng (SAD).
Khi đó đường thẳng MN song song với đường thẳng AK và đường thẳng AK nằm trong mặt phẳng (SAD). Vậy MN song song với mặt phẳng (SAD).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Đáp án đúng là: B
Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Trong mặt phẳng (SBD), SO cắt MN tại J.
Trong mặt phẳng (SAC), AJ cắt SC tại K.
Vì J thuộc MN nên J thuộc mặt phẳng (AMN) nên K thuộc AJ thì K thuộc mặt phẳng (AMN). Do đó K là giao điểm của mặt phẳng (AMN) và đường thẳng SC.
Tam giác SBD có M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD, suy ra MN // BD hay NJ // DO. Xét tam giác SDO có NJ // DO và N là trung điểm của SD nên suy ra J là trung điểm của SO.
Trong mặt phẳng (SAC), từ O kẻ OE song song với AK (E thuộc SC).
Xét tam giác SOE có JK // OE (do AK // OE), theo định lí Thalés ta có: \(\frac{{SK}}{{SE}} = \frac{{SJ}}{{SO}} = \frac{1}{2}\).
Do đó, K là trung điểm của SE.
Xét tam giác CAK có OE // AK, theo định lí Thalés ta có: \(\frac{{CE}}{{CK}} = \frac{{CO}}{{CA}} = \frac{1}{2}\). Do đó, E là trung điểm của CK.
Vậy SK = KE = CE, suy ra \(\frac{{SK}}{{SC}} = \frac{1}{3}\).
Lời giải
Lời giải:
a) Ta có: ABCD là hình thang có hai đáy AB và CD. Trong mặt phẳng (ABCD), gọi F là giao điểm của AD và BC. Khi đó F thuộc AD nên F thuộc mặt phẳng (SAD), F thuộc BC nên F thuộc mặt phẳng (SBC), vậy F là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Lại có S là một điểm chung khác của hai mặt phẳng (SAD) và (SBC).
Do vây, SF là giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Hai mặt phẳng (SAB) và (SCD) lần lượt chứa hai đường thẳng AB và CD song song với nhau. Khi đó giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung S và song song với AB, CD.
Qua S, vẽ đường thẳng d song song với AB, CD.
Vậy d là giao tuyến của hai mặt phẳng (SAB) và (SCD).
c) Trong mặt phẳng (ABCD), gọi E là giao điểm của AC và BD. Vì E thuộc AC nên E thuộc mặt phẳng (SAC), vì E thuộc BD nên E thuộc mặt phẳng (SBD). Do vậy, E là một điểm chung của hai mặt phẳng (SAC) và (SBD).
Lại có S là một điểm chung khác của hai mặt phẳng (SAC) và (SBD).
Vậy SE là giao tuyến của hai mặt phẳng (SAC) và (SBD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận