Câu hỏi:
11/07/2024 596Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:
Theo giả thiết, vận tốc trung bình của xe là \({v_a} = \frac{{180}}{3} = 60\) (km/h).
Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.
Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.
Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].
Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.
Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0,5 km đầu) |
Giá cước các km tiếp theo đến 30 km |
Giá cước từ km thứ 31 |
10 000 đồng |
13 500 đồng |
11 000 đồng |
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Câu 2:
Câu 3:
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}1 + {x^2}\,\,n\^e 'u\,\,x < 1\\4 - x\,\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\).
Câu 4:
Câu 5:
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \begin{array}{l}\sin \,x\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\\ - x + m\,\,\,\,\,\,n\^e 'u\,\,x < 0\end{array} \right.\)
liên tục trên ℝ.
về câu hỏi!