Câu hỏi:

12/07/2024 2,162

Tìm giá trị của tham số m để hàm số

\(f\left( x \right) = \left\{ \begin{array}{l}\sin \,x\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\\ - x + m\,\,\,\,\,\,n\^e 'u\,\,x < 0\end{array} \right.\)

liên tục trên ℝ.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Tập xác định của hàm số là ℝ.

+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).

+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).

Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).

Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\) (1).

Lại có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \sin \,x = 0\); f(0) = sin 0 = 0; \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x + m} \right) = m\).

Khi đó, (1) m = 0.

Vậy m = 0 thì thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một bảng giá cước taxi được cho như sau:

Giá mở cửa

(0,5 km đầu)

Giá cước các km tiếp theo đến 30 km

Giá cước từ km thứ 31

10 000 đồng

13 500 đồng

11 000 đồng

 a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Xem đáp án » 12/07/2024 8,754

Câu 2:

Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và \(\mathop {\lim }\limits_{x \to 1} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính g(1).

Xem đáp án » 12/07/2024 6,733

Câu 3:

Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\);

b) \(f\left( x \right) = \left\{ \begin{array}{l}1 + {x^2}\,\,n\^e 'u\,\,x < 1\\4 - x\,\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\).

Xem đáp án » 12/07/2024 6,250

Câu 4:

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Xem đáp án » 11/07/2024 2,370

Câu 5:

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Media VietJack

Xem đáp án » 11/07/2024 1,410

Câu 6:

Cho hai hàm số f(x) = x2 và g(x) = – x + 1.

a) Xét tính liên tục của hai hàm số trên tại x = 1.

b) Tính \(L = \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với f(1) + g(1).

Xem đáp án » 12/07/2024 796

Bình luận


Bình luận