Câu hỏi:

13/07/2024 1,686

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y + 2)2 = 9. Phép vị tự tâm O(0; 0) với tỉ số k = – 2 biến đường tròn (C) thành đường tròn (C'). Viết phương trình đường tròn (C').

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có (C): (x – 1)2 + (y + 2)2 = 9 hay (x – 1)2 + [y – (– 2)]2 = 32.

Suy ra đường tròn (C) có tâm I(1; – 2) và bán kính R = 3.

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C'). Vì (C') là ảnh của (C) qua phép vị tự tâm O(0; 0) với tỉ số k = – 2 nên I' là ảnh của I qua phép vị tự tâm O(0; 0) với tỉ số k = – 2 và R' = |– 2|.R = 2 . 3 = 6.

Vì I' là ảnh của I qua phép vị tự V(O, – 2) nên \(\overrightarrow {OI'} = - 2\overrightarrow {OI} \).

Suy ra \[\left\{ \begin{array}{l}{x_{I'}} = - 2{x_I} = - 2.1 = - 2\\{y_{I'}} = - 2{y_I} = - 2.\left( { - 2} \right) = 4\end{array} \right.\] nên I'(– 2; 4).

Vậy phương trình đường tròn (C') là

[x – (– 2)]2 + (y – 4)2 = 62 hay (x + 2)2 + (y – 4)2 = 36.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆: 2x – y – 1 = 0 và hai điểm A(– 1; 2), B(– 3; 4).

a) Tìm tọa độ điểm A' là ảnh của điểm A qua phép đối xứng trục ∆.

b) Xác định điểm M thuộc đường thẳng ∆ sao cho MA + MB đạt giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 5,678

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0. Viết phương trình của đường tròn (C') là ảnh của đường tròn (C) qua phép đối xứng tâm A(3; – 3).

Xem đáp án » 12/07/2024 5,465

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\overrightarrow u \left( { - 3;\,4} \right)\).

Xem đáp án » 13/07/2024 2,632

Câu 4:

Cho nửa đường tròn tâm O, đường kính AB và điểm M trên nửa đường tròn đó. Dựng về phía ngoài của tam giác ABM tam giác AMN vuông cân tại M. Chứng minh rằng khi M thay đổi trên nửa đường tròn thì điểm N luôn thuộc một nửa đường tròn cố định.

Xem đáp án » 13/07/2024 803

Câu 5:

Cho tam giác ABC nội tiếp đường tròn tâm O. Các đỉnh B, C cố định còn đỉnh A thay đổi trên đường tròn đó. Vẽ hình bình hành ABCD. Chứng minh rằng điểm D luôn thuộc một đường tròn cố định.

Xem đáp án » 13/07/2024 737

Câu 6:

Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Xem đáp án » 11/07/2023 416

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn