Câu hỏi:
11/07/2023 417Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
Ta có: \(\left| {\overrightarrow {EF} } \right| = m\) (m > 0) không đổi.
Đặt \(\overrightarrow u = \overrightarrow {EF} \) \(\left( {\overrightarrow u \ne \overrightarrow 0 } \right)\), \(\overrightarrow u \) không đổi, khi đó \(\left| {\overrightarrow u } \right| = m\) không đổi.
Gọi G là ảnh của điểm B qua phép tịnh tiến theo vectơ \( - \overrightarrow u \). Khi đó \(\overrightarrow {BG} = - \overrightarrow u \). Vì B cố định và \(\overrightarrow u \) không đổi nên G cố định. Gọi G' là ảnh của G qua phép đối xứng trục d thì G' cố định.
Gọi giao điểm của AG' và đường thẳng d là E, trên d lấy điểm F thỏa mãn EF = m và \(\overrightarrow {EF} = \overrightarrow u = - \overrightarrow {BG} \) hay \(\overrightarrow {EF} = \overrightarrow {GB} \). Khi đó BGEF là hình bình hành nên BF = GE.
Mà G và G' đối xứng nhau qua d nên GE = G'E. Do đó BF = GE = G'E.
Ta có: AE + BF = AE + G'E = AG' (1).
Ta có E và F như trên là hai điểm cần tìm để AE + BF nhỏ nhất.
Thật vậy, gọi E' và F' là 2 điểm trên d, khác E và F sao cho \(\overrightarrow {E'F'} = \overrightarrow u \) và \(\left| {\overrightarrow {E'F'} } \right| = \left| {\overrightarrow u } \right| = m\).
Ta có: AE' + BF' = AE' + GE' = AE' + G'E' > AG' (2) (bất đẳng thức trong tam giác AG'E').
Từ (1) và (2) suy ra AE + BF < AE' + BF'. Từ đó suy ra điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆: 2x – y – 1 = 0 và hai điểm A(– 1; 2), B(– 3; 4).
a) Tìm tọa độ điểm A' là ảnh của điểm A qua phép đối xứng trục ∆.
b) Xác định điểm M thuộc đường thẳng ∆ sao cho MA + MB đạt giá trị nhỏ nhất.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!