Câu hỏi:

13/07/2024 8,020

Phương trình tan x = − 1 có các nghiệm là:

A. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

C. \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

D. \(x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có tan x = − 1 \( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình sin x = 1 có các nghiệm là:

A. \(x = \frac{\pi }{2} + k2\pi \,\left( {k \in \mathbb{Z}} \right)\).

B. \(x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).

C. \(x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\).

D. \(x = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 18,277

Câu 2:

Số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là:

A. 2.

B. 3.

C. 4.

D. 6.

Xem đáp án » 13/07/2024 5,840

Câu 3:

Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:

A. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

C. \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\].

D. \(\left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 4,842

Câu 4:

Giải phương trình:

\(\cot \left( {x + \frac{\pi }{5}} \right) = 1\).

Xem đáp án » 13/07/2024 3,270

Câu 5:

Giá trị của m để phương trình cos x = m có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) là:

A. 0 ≤ m < 1.

B. 0 ≤ m ≤ 1.

C. 0 < m ≤ 1.

D. 0 < m < 1.

Xem đáp án » 13/07/2024 2,704

Câu 6:

Phương trình \(\cos x = - \frac{1}{2}\) có các nghiệm là:

A. \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

B. \(\left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

C. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

D. \(\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 2,429

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store