Đăng nhập
Đăng ký
470 lượt thi 62 câu hỏi 60 phút
1172 lượt thi
Thi ngay
725 lượt thi
768 lượt thi
414 lượt thi
413 lượt thi
449 lượt thi
327 lượt thi
1031 lượt thi
321 lượt thi
Câu 1:
Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.
Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m. Khi guồng quay đều, khoảng cách h (m) từ một ống đựng nước gắn tại một điểm của guồng đến mặt nước được tính theo công thức h = |y|, trong đó \(y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\), với x (phút) là thời gian quay của guồng (x ≥ 0).
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020).
Khoảng cách h phụ thuộc vào thời gian quay x như thế nào?
Câu 2:
Cho hàm số f(x) = x2.
• Với x ∈ ℝ, hãy so sánh f(‒x) và f(x).
• Quan sát parabol (P) là đồ thị của hàm số f(x) = x2 (Hình 19) và cho biết trục đối xứng của (P) là đường thẳng nào.
Câu 3:
Cho hàm số g(x) = x.
• Với x ∈ ℝ, hãy so sánh g(‒x) và ‒g(x).
• Quan sát đường thẳng d là đồ thị của hàm số g(x) = x (Hình 20) và cho biết gốc toạ độ O có là tâm đối xứng của đường thẳng d hay không.
Câu 4:
Câu 5:
Cho ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ.
Câu 6:
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21.
Có nhận xét gì về đồ thị hàm số trên mỗi đoạn [a ; a + T], [a + T; a + 2T], [a – T; a]?
Câu 7:
Lấy điểm M(x0; f(x0)) thuộc đồ thị hàm số với x0 ∈ [a; a + T]. So sánh mỗi giá trị f(x0 + T), f(x0 − T) với f(x0).
Câu 8:
Cho ví dụ về hàm số tuần hoàn.
Câu 9:
Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 22). Hãy xác định sinx.
Câu 10:
Cho hàm số y = sinx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau
Câu 11:
Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; sinx) với x ∈ [‒π; π] và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (Hình 23).
Câu 12:
Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = sin x trên ℝ được biểu diễn ở Hình 24.
Câu 13:
Quan sát đồ thị hàm số y = sinx ở Hình 24.
Nêu tập giá trị của hàm số y = sinx.
Câu 14:
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = sinx.
Câu 15:
Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta có nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π] hay không? Hàm số y = sinx có tuần hoàn hay không?
Câu 16:
Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx.
Câu 17:
Câu 18:
Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 25). Hãy xác định cosx.
Câu 19:
Cho hàm số y = cosx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
Câu 20:
Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x ; cosx) với x ∈ [‒π; π] và nối lại ta được đồ thị hàm số y = cosx trên đoạn [‒π; π] (Hình 26).
Câu 21:
Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], ta có đồ thị hàm số y = cosx trên ℝ được biểu diễn ở Hình 27.
Câu 22:
Quan sát đồ thị hàm số y = cosx ở Hình 27.
Nêu tập giá trị của hàm số y = cosx.
Câu 23:
Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cosx.
Câu 24:
Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π] hay không? Hàm số y = cosx có tuần hoàn hay không?
Câu 25:
Tìm khoảng đồng biến, nghịch biến của hàm số y = cosx.
Câu 26:
Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?
Câu 27:
Xét tập hợp \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\]. Với mỗi số thực x ∈ D, hãy nêu định nghĩa tanx.
Câu 28:
Cho hàm số y = tanx.
Câu 29:
Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số y = tan x trên khoảng \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (Hình 28).
Câu 30:
Làm tương tự như trên đối với các khoảng \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\], …, ta có đồ thị hàm số y = tan x trên D được biểu diễn ở Hình 29.
Câu 31:
Quan sát đồ thị hàm số y = tanx ở Hình 29.
Nêu tập giá trị của hàm số y = tanx.
Câu 32:
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.
Câu 33:
Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) hay không? Hàm số y = tanx có tuần hoàn hay không?
Câu 34:
Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.
Câu 35:
Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Câu 36:
Xét tập hợp E = ℝ \ {kπ | k ∈ ℤ}. Với mỗi số thực x ∈ E, hãy nêu định nghĩa cotx.
Câu 37:
Cho hàm số y = cotx.
Câu 38:
Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cotx trên khoảng (0; π) (Hình 30).
Câu 39:
Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.
Câu 40:
Quan sát đồ thị hàm số y = cotx ở Hình 31.
Câu 41:
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.
Câu 42:
Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π) hay không? Hàm số y = cotx có tuần hoàn hay không?
Câu 43:
Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.
Câu 44:
Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = cotx trên khoảng (0; π).
Câu 45:
Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Câu 46:
Hàm số y = sinx nhận giá trị bằng 0;
Câu 47:
Hàm số y = cosx nhận giá trị bằng ‒1;
Câu 48:
Hàm số y = cosx nhận giá trị bằng 0.
Câu 49:
Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = tanx nhận giá trị bằng ‒1;
Câu 50:
Hàm số y = tanx nhận giá trị bằng 0;
Câu 51:
Hàm số y = cotx nhận giá trị bằng 1;
Câu 52:
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = sinx trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right),\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\);
Câu 53:
Câu 54:
Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:
y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).
Câu 55:
Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho sinα = m;
Câu 56:
Câu 57:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;
Câu 58:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ (0; π) sao cho cotα = m.
Câu 59:
Xét tính chẵn, lẻ của các hàm số:
a) y = sinx cosx;
b) y = tanx + cotx;
c) y = sin2x.
Câu 60:
Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó A, φ, ω là các hằng số (ω > 0). Khi đó, chu kì T của dao động là \(T = \frac{{2\pi }}{\omega }\).
Xác định giá trị của li độ khi t = 0, \(t = \frac{T}{4},t = \frac{T}{2},t = \frac{{3T}}{4}\), t = T.
Câu 61:
Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường hợp sau:
A = 3 và φ = 0; A = 3 và \(\varphi = - \frac{\pi }{2}\); A = 3 và \(\varphi = \frac{\pi }{2}\).
Câu 62:
Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ống đựng nước cách mặt nước 2 m.
94 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com