Giải SGK Toán 11 CD Bài 2. Giới hạn của hàm số có đáp án
28 người thi tuần này 4.6 540 lượt thi 19 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Sau bài học này chúng ta sẽ biết:
Trong toán học giá trị 0,070 được gọi là giới hạn của hàm số khi x tiến tới 0,2.
Lời giải
Lời giải
a) Ta có bảng giá trị sau:
x |
x1 = 2 |
\({x_2} = \frac{3}{2}\) |
\({x_3} = \frac{4}{3}\) |
\({x_4} = \frac{5}{4}\) |
... |
\({x_n} = \frac{{n + 1}}{n}\) |
... |
f(x) |
f(x1) = 4 |
f(x2) = 3 |
\(f\left( {{x_3}} \right) = \frac{8}{3}\) |
\(f\left( {{x_4}} \right) = \frac{5}{2}\) |
... |
\(f\left( {{x_n}} \right) = \frac{{2\left( {n + 1} \right)}}{n}\) |
... |
Ta có: \[{\rm{limf}}({x_n}) = \lim \frac{{2\left( {n + 1} \right)}}{n} = 2\].
b) Lấy dãy (xn) bất kí thỏa mãn xn → 1 ta có:
f(xn) = 2xn
⇒ \[\lim f\left( {{x_n}} \right) = \lim 2{x_n} = 2\lim {x_n} = 2.1 = 2\].
Lời giải
Lời giải
Đặt f(x) = x2
Giả sử (xn) là dãy số thỏa mãn limxn = 2.
⇒ limf(xn) = \(\lim x_n^2 = {2^2} = 4\).
Vậy \(\mathop {{\mathop{\rm l}\nolimits} i{\rm{m}}}\limits_{x \to 2} {{\rm{x}}^2} = 4\).
Lời giải
Lời giải
a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 - 1} \right) = \lim x_n^2 - 1 = 1 - 1 = 0\).
\( \Rightarrow \lim f\left( x \right) = 0\).
\(\lim g\left( {{x_n}} \right) = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 = 2\)
\( \Rightarrow \lim g\left( x \right) = 2\).
b) Ta có: f(x) + g(x) = x2 – 1 + x + 1 = x2 + x
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 + {x_n}} \right) = \lim x_n^2 + \lim {x_n} = {1^2} + 1 = 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 2\).
c) Ta có: f(x) – g(x) = x2 – 1 – x – 1 = x2 – x – 2
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) - g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 - {x_n} - 2} \right) = \lim x_n^2 - \lim {x_n} - 2 = {1^2} - 1 - 2 = - 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = - 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2\).
d) Ta có: f(x).g(x) = (x2 – 1)(x + 1) = x3 + x2 – x – 1
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right).g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^3 + x_n^2 - {x_n} - 1} \right) = \lim x_n^3 + \lim x_n^2 - \lim {x_n} - 1 = {1^3} + {1^2} - 1 - 1 = 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = 0\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) Ta có: \(\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^2} - 1}}{{x + 1}}\)
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \frac{{f\left( {{x_n}} \right)}}{{g\left( {{x_n}} \right)}} = \lim \frac{{x_n^2 - 1}}{{{x_n} + 1}} = \lim \frac{{\left( {{x_n} - 1} \right)\left( {{x_n} + 1} \right)}}{{{x_n} + 1}} = \lim \left( {{x_n} - 1} \right) = 0\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = 0\).
Ta lại có: \(\frac{{\lim f\left( x \right)}}{{\lim g\left( x \right)}} = \frac{0}{2} = 0\)
Vậy \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
Lời giải
Lời giải
a) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {x + 1} \right)\left( {{x^2} + 2x} \right)} \right] = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right).\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x} \right) = 3.8 = 24\).
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + x + 3} = \sqrt {\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + x + 3} \right)} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.