Câu hỏi:
13/07/2024 157Cho hàm số f(x) = x2 – 1, g(x) = x + 1.
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 - 1} \right) = \lim x_n^2 - 1 = 1 - 1 = 0\).
\( \Rightarrow \lim f\left( x \right) = 0\).
\(\lim g\left( {{x_n}} \right) = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 = 2\)
\( \Rightarrow \lim g\left( x \right) = 2\).
b) Ta có: f(x) + g(x) = x2 – 1 + x + 1 = x2 + x
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 + {x_n}} \right) = \lim x_n^2 + \lim {x_n} = {1^2} + 1 = 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 2\).
c) Ta có: f(x) – g(x) = x2 – 1 – x – 1 = x2 – x – 2
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) - g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 - {x_n} - 2} \right) = \lim x_n^2 - \lim {x_n} - 2 = {1^2} - 1 - 2 = - 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = - 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2\).
d) Ta có: f(x).g(x) = (x2 – 1)(x + 1) = x3 + x2 – x – 1
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right).g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^3 + x_n^2 - {x_n} - 1} \right) = \lim x_n^3 + \lim x_n^2 - \lim {x_n} - 1 = {1^3} + {1^2} - 1 - 1 = 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = 0\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) Ta có: \(\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^2} - 1}}{{x + 1}}\)
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \frac{{f\left( {{x_n}} \right)}}{{g\left( {{x_n}} \right)}} = \lim \frac{{x_n^2 - 1}}{{{x_n} + 1}} = \lim \frac{{\left( {{x_n} - 1} \right)\left( {{x_n} + 1} \right)}}{{{x_n} + 1}} = \lim \left( {{x_n} - 1} \right) = 0\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = 0\).
Ta lại có: \(\frac{{\lim f\left( x \right)}}{{\lim g\left( x \right)}} = \frac{0}{2} = 0\)
Vậy \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.
Câu 2:
Câu 3:
Câu 4:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right)\);
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).
Câu 5:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}}\);
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
e) \(\mathop {\lim }\limits_{x \to 6} \frac{1}{{x - 6}}\);
f) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}\).
Câu 6:
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2}\);
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}\).
Câu 7:
về câu hỏi!