Câu hỏi:
13/07/2024 1,888Cho hàm số f(x) = x2 – 1, g(x) = x + 1.
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 - 1} \right) = \lim x_n^2 - 1 = 1 - 1 = 0\).
\( \Rightarrow \lim f\left( x \right) = 0\).
\(\lim g\left( {{x_n}} \right) = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 = 2\)
\( \Rightarrow \lim g\left( x \right) = 2\).
b) Ta có: f(x) + g(x) = x2 – 1 + x + 1 = x2 + x
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 + {x_n}} \right) = \lim x_n^2 + \lim {x_n} = {1^2} + 1 = 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 2\).
c) Ta có: f(x) – g(x) = x2 – 1 – x – 1 = x2 – x – 2
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right) - g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 - {x_n} - 2} \right) = \lim x_n^2 - \lim {x_n} - 2 = {1^2} - 1 - 2 = - 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = - 2\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2\).
d) Ta có: f(x).g(x) = (x2 – 1)(x + 1) = x3 + x2 – x – 1
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \left[ {f\left( {{x_n}} \right).g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^3 + x_n^2 - {x_n} - 1} \right) = \lim x_n^3 + \lim x_n^2 - \lim {x_n} - 1 = {1^3} + {1^2} - 1 - 1 = 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = 0\).
Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\).
Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) Ta có: \(\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^2} - 1}}{{x + 1}}\)
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
\(\lim \frac{{f\left( {{x_n}} \right)}}{{g\left( {{x_n}} \right)}} = \lim \frac{{x_n^2 - 1}}{{{x_n} + 1}} = \lim \frac{{\left( {{x_n} - 1} \right)\left( {{x_n} + 1} \right)}}{{{x_n} + 1}} = \lim \left( {{x_n} - 1} \right) = 0\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = 0\).
Ta lại có: \(\frac{{\lim f\left( x \right)}}{{\lim g\left( x \right)}} = \frac{0}{2} = 0\)
Vậy \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.
Câu 2:
Câu 3:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right)\);
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).
Câu 4:
Câu 5:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}}\);
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
e) \(\mathop {\lim }\limits_{x \to 6} \frac{1}{{x - 6}}\);
f) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}\).
Câu 6:
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2}\);
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}\).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận