Giải SGK Toán 11 CD Bài 3. Hàm số liên tục có đáp án
37 người thi tuần này 4.6 475 lượt thi 15 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Lời giải
Kiến thức trong toán học thể hiện chuyển động của đường đi là đường liên mạch đó là kiến thức về hàm số liên tục.
Để tìm hiểu kĩ hơn hàm số liên tục là gì thì chúng ta sẽ cùng tìm hiểu bài học ngày hôm nay. Bài học: “Hàm số liên tục”.
Lời giải
Lời giải
a) Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} x = 1\).
b) Ta có: f(1) = 1 nên \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).
Lời giải
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + 1} \right) = 2\) và f(1) = 13 + 1 = 2
Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).
Vì vậy hàm số liên tục tại x0 = 1.
Lời giải
Lời giải
a) Với x0 ∈ ℝ bất kì ta có: \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = {x_0} + 1 = f\left( {{x_0}} \right)\). Do đó hàm số liên tục tại x = x0.
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị x ∈ ℝ.
Lời giải
Lời giải
+) Với mỗi x0 ∈ (– ∞; 2) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x - 1} \right) = {x_0} - 1 = f\left( {{x_0}} \right)\) là hàm số liên tục.
+) Với mỗi x0 ∈ (2; +∞) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x} \right) = - {x_0} = f\left( {{x_0}} \right)\) là hàm số liên tục.
+) Tại x = 2, ta có: \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} \right) = 1\) và f(2) = – 2 nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) \ne f\left( 2 \right)\).
Vậy hàm số không liên tục tại x = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





