Đăng nhập
Đăng ký
430 lượt thi 20 câu hỏi 45 phút
1172 lượt thi
Thi ngay
725 lượt thi
768 lượt thi
453 lượt thi
413 lượt thi
449 lượt thi
327 lượt thi
1031 lượt thi
321 lượt thi
Câu 1:
Cho hai góc a và b với tan a = \(\frac{1}{7}\) và tanb = \(\frac{3}{4}.\) Khi đó, tan(a + b) bằng:
A. 1.
B. \( - \frac{{17}}{{31}}\).
C. \(\frac{{17}}{{31}}\).
D. – 1.
Câu 2:
Nếu \(\sin \alpha = \frac{1}{{\sqrt 3 }}\) với \(0 < \alpha < \frac{\pi }{2}\) thì giá trị của \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\) bằng:
A. \(\frac{{\sqrt 6 }}{6} - \frac{1}{2}\).
B. \(\sqrt 6 - 3\).
C. \(\frac{{\sqrt 6 }}{6} - 3\).
D. \(\sqrt 6 - \frac{1}{2}\).
Câu 3:
Nếu \(\sin \alpha = \frac{2}{3}\) thì giá trị của biểu thức \(P = \left( {1 - 3\cos 2\alpha } \right)\left( {2 + 3\cos 2\alpha } \right)\) bằng:
A. \(\frac{{11}}{9}\).
B. \(\frac{{12}}{9}\).
C. \(\frac{{13}}{9}\).
D. \(\frac{{14}}{9}\).
Câu 4:
Chọn đẳng thức đúng trong các đẳng thức sau:
A. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{4}\).
B. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{4}\).
C. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{2}\).
D. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{2}\).
Câu 5:
Rút gọn biểu thức cos(120° – x) + cos(120° + x) – cos x ta được kết quả là:
A. – 2cos x.
B. – cos x.
C. 0.
D. sin x – cos x.
Câu 6:
Nếu \(\cos a = \frac{3}{4}\) thì giá trị của \(\cos \frac{a}{2}\cos \frac{a}{2}\) bằng:
A. \(\frac{{23}}{{16}}\).
B. \(\frac{7}{8}\).
C. \(\frac{7}{{16}}\).
D. \(\frac{{23}}{8}\).
Câu 7:
Nếu \(\cos a = \frac{{\sqrt 5 }}{3}\) thì giá trị của biểu thức \(A = 4\sin \left( {a + \frac{\pi }{3}} \right)\sin \left( {a - \frac{\pi }{3}} \right)\) bằng:
A. \( - \frac{{11}}{9}\).
B. \(\frac{{11}}{9}\).
C. \( - \frac{1}{9}\).
D. \(\frac{1}{9}\).
Câu 8:
Nếu \(\cos a = \frac{1}{3},\,\,\sin b = \frac{{ - 2}}{3}\) thì giá trị cos(a + b) cos(a − b) bằng:
A. \( - \frac{2}{3}\).
B. \(\frac{1}{3}\).
C. \(\frac{2}{3}\).
D. \( - \frac{1}{3}\).
Câu 9:
Giá trị của biểu thức \(P = \frac{{\sin \frac{\pi }{9} + \sin \frac{{5\pi }}{9}}}{{\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}}}\) bằng:
A. \(\frac{1}{{\sqrt 3 }}\).
B. \( - \frac{1}{{\sqrt 3 }}\).
C. \(\sqrt 3 \).
Câu 10:
Rút gọn biểu thức \(A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}\) ta được kết quả là:
A. tan x.
B. tan 3x.
C. tan 2x.
D. tan x + tan 2x + tan 3x.
Câu 11:
Cho \(\sin a = \frac{2}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính:
cos a, tan a;
Câu 12:
\(\sin \left( {a + \frac{\pi }{4}} \right),\,\cos \left( {a - \frac{{5\pi }}{6}} \right),\,\tan \left( {a + \frac{{2\pi }}{3}} \right)\);
Câu 13:
sin 2a, cos 2a.
Câu 14:
Cho cos a = 0,2 với π < a < 2π. Tính \(\sin \frac{a}{2}\), \(\cos \frac{a}{2}\), \(\tan \frac{a}{2}\).
Câu 15:
Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính sin a, cos a, tan a.
Câu 16:
Cho cos(a + 2b) = 2cos a. Chứng minh rằng: tan(a + b) tan b = \(\frac{{ - 1}}{3}\).
Câu 17:
Cho tam giác ABC, chứng minh rằng:
tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
Câu 18:
\(\tan \frac{A}{2}.\tan \frac{B}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{C}{2}.\tan \frac{A}{2} = 1\).
Câu 19:
Trên một mảnh đất hình vuông ABCD, bác An đặt một chiếc đèn pin tại vị trí A chiếu chùm sáng phân kì sang phía góc C. Bác An nhận thấy góc chiếu sáng của đèn pin giới hạn bởi hai tia AM và AN, ở đó các điểm M, N lần lượt thuộc các cạnh BC, CD sao cho BM = \(\frac{1}{2}\)BC, DN = \(\frac{1}{3}\)DC (Hình 4).
Tính \(\tan \left( {\widehat {BAM} + \widehat {DAN}} \right)\).
Câu 20:
Góc chiếu sáng của đèn pin bằng bao nhiêu độ?
86 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com