Câu hỏi:
12/07/2024 1,452Rút gọn biểu thức \(A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}\) ta được kết quả là:
A. tan x.
B. tan 3x.
C. tan 2x.
D. tan x + tan 2x + tan 3x.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có \(A = \frac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}\)\( = \frac{{\left( {\sin x + \sin 3x} \right) + \sin 2x}}{{\left( {\cos x + \cos 3x} \right) + \cos 2x}}\)
\( = \frac{{2\sin \frac{{x + 3x}}{2}\cos \frac{{x - 3x}}{2} + \sin 2x}}{{2\cos \frac{{x + 3x}}{2}\cos \frac{{x - 3x}}{2} + \cos 2x}}\)\( = \frac{{2\sin 2x\cos \left( { - x} \right) + \sin 2x}}{{2\cos 2x\cos \left( { - x} \right) + \cos 2x}}\)
\( = \frac{{\sin 2x\left( {2\cos x + 1} \right)}}{{\cos 2x\left( {2\cos x + 1} \right)}} = \frac{{\sin 2x}}{{\cos 2x}} = \tan 2x\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chọn đẳng thức đúng trong các đẳng thức sau:
A. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{4}\).
B. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{4}\).
C. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{2}\).
D. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{2}\).
Câu 2:
Cho tam giác ABC, chứng minh rằng:
\(\tan \frac{A}{2}.\tan \frac{B}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{C}{2}.\tan \frac{A}{2} = 1\).
Câu 3:
Nếu \(\sin \alpha = \frac{2}{3}\) thì giá trị của biểu thức \(P = \left( {1 - 3\cos 2\alpha } \right)\left( {2 + 3\cos 2\alpha } \right)\) bằng:
A. \(\frac{{11}}{9}\).
B. \(\frac{{12}}{9}\).
C. \(\frac{{13}}{9}\).
D. \(\frac{{14}}{9}\).
Câu 4:
Cho cos a = 0,2 với π < a < 2π. Tính \(\sin \frac{a}{2}\), \(\cos \frac{a}{2}\), \(\tan \frac{a}{2}\).
Câu 5:
Nếu \(\sin \alpha = \frac{1}{{\sqrt 3 }}\) với \(0 < \alpha < \frac{\pi }{2}\) thì giá trị của \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\) bằng:
A. \(\frac{{\sqrt 6 }}{6} - \frac{1}{2}\).
B. \(\sqrt 6 - 3\).
C. \(\frac{{\sqrt 6 }}{6} - 3\).
D. \(\sqrt 6 - \frac{1}{2}\).
Câu 6:
Cho \(\sin a = \frac{2}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính:
sin 2a, cos 2a.
Câu 7:
Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính sin a, cos a, tan a.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
75 câu trắc nghiệm Giới hạn cơ bản (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
về câu hỏi!