Đăng nhập
Đăng ký
797 lượt thi 28 câu hỏi 50 phút
1172 lượt thi
Thi ngay
725 lượt thi
414 lượt thi
453 lượt thi
413 lượt thi
449 lượt thi
327 lượt thi
1031 lượt thi
321 lượt thi
Câu 1:
Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn: phép tính luỹ thừa với số mũ tự nhiên và những công thức để tính toán hay biến đổi những biểu thức chứa các luỹ thừa như vậy. Việc lấy các giá trị lượng giác của góc lượng giác đã hình thành nên những phép tính mới trong tập hợp các số thực, đó là những phép tính lượng giác.
Có hay không những công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác?
Câu 2:
Cho \(a = \frac{\pi }{6},b = \frac{\pi }{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).
Câu 3:
Tính sin(a – b) bằng cách biến đổi sin(a – b) = sin[a + (‒b)] và sử dụng công thức (*).
Câu 4:
Tính \[\sin \frac{\pi }{{12}}\].
Câu 5:
Tính cos(a + b) bằng cách biến đổi cos(a + b) = \(\sin \left[ {\frac{\pi }{2} - \left( {a + b} \right)} \right] = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right]\) và sử dụng công thức cộng đối với sin.
Câu 6:
Tính cos(a ‒ b) bằng cách biến đổi cos(a – b) = cos[a + (‒b)] và sử dụng công thức cos(a + b) có được ở câu a.
Câu 7:
Tính cos15°.
Câu 8:
Sử dụng công thức cộng đối với sin và côsin, hãy tính tan(a + b) theo tana và tanb khi các biểu thức đều có nghĩa.
Câu 9:
Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi \[tan\left( {a - b} \right) = tan\left[ {a + \left( { - b} \right)} \right]\] và sử dụng công thức tan(a + b) có được ở bài trước
Câu 10:
Tính tan165°.
Câu 11:
Tính sin2a, cos2a, tan2a bằng cách thay b = a trong công thức cộng.
Câu 12:
Cho \(\tan \frac{a}{2} = - 2\). Tính tana.
Câu 13:
Tính: \(\sin \frac{\pi }{8},\cos \frac{\pi }{8}\).
Câu 14:
Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:
cos(a + b) + cos(a – b); cos(a + b) – cos(a – b); sin(a + b) + sin(a – b).
Câu 15:
Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).
Câu 16:
Sử dụng công thức biến đổi tích thành tổng và đặt a + b = u; a − b = v rồi biến đổi các biểu thức sau thành tích: cosu + cosv; cosu – cos v; sinu + sinv; sinu – sinv.
Câu 17:
Tính: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\].
Câu 18:
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).
Câu 19:
Tính:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);
\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).
Câu 20:
Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.
Câu 21:
Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.
Câu 22:
Cho sina + cosa = 1. Tính: sin2a.
Câu 23:
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Câu 24:
Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).
Câu 25:
Rút gọn biểu thức: \(A = \frac{{\sin 2x}}{{1 + \cos 2x}}\).
Câu 26:
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).
Câu 27:
Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Câu 28:
Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20 m. Để đảm bảo an ninh, trên nóc chung cư II người ta lắp camera ở vị trí C. Gọi A, B lần lượt là vị trí thấp nhất, cao nhất trên chung cư I mà camera có thể quan sát được (Hình 18). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư I). Biết rằng chiều cao của chung cư II là CK = 32 m, AH = 6 m, BH = 24 m (làm tròn kết quả đến hàng phần mười theo đơn vị độ).
159 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com