Câu hỏi:

13/07/2024 185

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn: phép tính luỹ thừa với số mũ tự nhiên và những công thức để tính toán hay biến đổi những biểu thức chứa các luỹ thừa như vậy. Việc lấy các giá trị lượng giác của góc lượng giác đã hình thành nên những phép tính mới trong tập hợp các số thực, đó là những phép tính lượng giác.

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn (ảnh 1)

Có hay không những công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Có các công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác sau:

‒ Công thức cộng;

‒ Công thức nhân đôi;

‒ Công thức biến đổi tích thành tổng;

‒ Công thức biến đổi tổng thành tích.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 45,272

Câu 2:

Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Xem đáp án » 13/07/2024 25,305

Câu 3:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 13/07/2024 18,382

Câu 4:

Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).

Xem đáp án » 13/07/2024 18,146

Câu 5:

Cho sina + cosa = 1. Tính: sin2a.

Xem đáp án » 13/07/2024 17,569

Câu 6:

Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).

Xem đáp án » 13/07/2024 13,918

Câu 7:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 13/07/2024 13,876