Câu hỏi:

13/07/2024 199

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn: phép tính luỹ thừa với số mũ tự nhiên và những công thức để tính toán hay biến đổi những biểu thức chứa các luỹ thừa như vậy. Việc lấy các giá trị lượng giác của góc lượng giác đã hình thành nên những phép tính mới trong tập hợp các số thực, đó là những phép tính lượng giác.

Ở lớp dưới, ta đã làm quen với một số phép tính trong tập hợp các số thực, chẳng hạn (ảnh 1)

Có hay không những công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Có các công thức để tính toán hay biến đổi những biểu thức chứa giá trị lượng giác sau:

‒ Công thức cộng;

‒ Công thức nhân đôi;

‒ Công thức biến đổi tích thành tổng;

‒ Công thức biến đổi tổng thành tích.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(0 < a < \frac{\pi }{2}\) nên \(\sin a > 0\).

Áp dụng công thức sin2a + cos2a = 1, ta có:

\[si{n^2}a + {\left( {\frac{3}{5}} \right)^2} = 1\]

\( \Rightarrow si{n^2}a = 1 - {\left( {\frac{3}{5}} \right)^2} = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)

\[ \Rightarrow \sin a = \frac{4}{5}\] (do sina > 0).

Khi đó \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{4}{5}}}{{\frac{3}{5}}} = \frac{4}{3}\).

Áp dụng công thức cộng, ta có:

\(\sin \left( {a + \frac{\pi }{6}} \right) = \sin a\cos \frac{\pi }{6} + \cos a\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{4\sqrt 3 + 3}}{{10}}\);

\(cos\left( {a - \frac{\pi }{3}} \right) = \cos a\,cos\frac{\pi }{3} + \sin a\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\);

\(\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}.1}} = \frac{{\frac{7}{3}}}{{ - \frac{1}{3}}} = - 7\).

Lời giải

Ta có:

tan2a = tan[(a + b) + (a – b)]

         \( = \frac{{\tan \left( {a + b} \right) + \tan \left( {a - b} \right)}}{{1 - \tan \left( {a + b} \right)\tan \left( {a - b} \right)}} = \frac{{3 + 2}}{{1 - 3.2}} = \frac{5}{{ - 5}} = - 1\);

tan2b = tan[(a + b) ‒ (a – b)]

          \( = \frac{{\tan \left( {a + b} \right) - \tan \left( {a - b} \right)}}{{1 + \tan \left( {a + b} \right)\tan \left( {a - b} \right)}} = \frac{{3 - 2}}{{1 + 3.2}} = \frac{1}{7}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay