Câu hỏi:

13/07/2024 44,918

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do \(0 < a < \frac{\pi }{2}\) nên \(\sin a > 0\).

Áp dụng công thức sin2a + cos2a = 1, ta có:

\[si{n^2}a + {\left( {\frac{3}{5}} \right)^2} = 1\]

\( \Rightarrow si{n^2}a = 1 - {\left( {\frac{3}{5}} \right)^2} = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)

\[ \Rightarrow \sin a = \frac{4}{5}\] (do sina > 0).

Khi đó \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{4}{5}}}{{\frac{3}{5}}} = \frac{4}{3}\).

Áp dụng công thức cộng, ta có:

\(\sin \left( {a + \frac{\pi }{6}} \right) = \sin a\cos \frac{\pi }{6} + \cos a\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{4\sqrt 3 + 3}}{{10}}\);

\(cos\left( {a - \frac{\pi }{3}} \right) = \cos a\,cos\frac{\pi }{3} + \sin a\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\);

\(\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}.1}} = \frac{{\frac{7}{3}}}{{ - \frac{1}{3}}} = - 7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Xem đáp án » 13/07/2024 25,015

Câu 2:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 13/07/2024 18,231

Câu 3:

Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).

Xem đáp án » 13/07/2024 17,883

Câu 4:

Cho sina + cosa = 1. Tính: sin2a.

Xem đáp án » 13/07/2024 16,955

Câu 5:

Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).

Xem đáp án » 13/07/2024 13,755

Câu 6:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 13/07/2024 13,679

Bình luận


Bình luận
Vietjack official store