Câu hỏi:
13/07/2024 6,723Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Áp dụng công thức biến đổi tích thành tổng, ta có:
\(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\)
\( = \frac{1}{2}\left[ {\cos \left( {\frac{{3a}}{2} + \frac{a}{2}} \right) + \cos \left( {\frac{{3a}}{2} - \frac{a}{2}} \right)} \right]\)
\( = \frac{1}{2}\left[ {\cos 2a + \cos a} \right]\)
Mà cos2a = 2cos2a – 1 = \(2.{\left( {\frac{2}{3}} \right)^2} - 1 = 2.\frac{4}{9} - 1 = - \frac{1}{9}\)
Do đó \(B = \frac{1}{2}\left[ {\cos 2a + \cos a} \right] = \frac{1}{2}.\left[ { - \frac{1}{9} + \frac{2}{3}} \right] = \frac{5}{{18}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).
Câu 3:
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Câu 4:
Tính:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);
\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).
Câu 7:
Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).
về câu hỏi!