Câu hỏi:
13/07/2024 555Tính sin2a, cos2a, tan2a bằng cách thay b = a trong công thức cộng.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có:
• sin2a = sin(a + a) = sinacosa + cosasina = 2sinacosa;
• cos2a = cos(a + a) = cosacosa – sinasina = cos2a – sin2a;
• Khi các biểu thức đều có nghĩa thì
\[\tan 2a = \tan \left( {a + a} \right) = \frac{{\tan a + \tan a}}{{1 - \tan a\tan a}} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).
Câu 3:
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Câu 4:
Tính:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);
\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).
Câu 7:
Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).
về câu hỏi!