Giải SGK Toán 11 CD Bài 1. Giới hạn của dãy số có đáp án
35 người thi tuần này 4.6 550 lượt thi 20 câu hỏi
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
160 bài trắc nghiệm Giới hạn từ đề thi đại học có đáp án (P1)
100 câu trắc nghiệm Vecto trong không gian cơ bản (P1)
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
58 Bài tập Giới hạn ôn thi đại học có lời giải (P1)
105 Bài tập trắc nghiệm Tổ hợp - Xác suất từ đề thi đại học có lời giải (P1)
61 Bài tập Tổ Hợp - Xác xuất mức độ cơ bản có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Giới hạn hữu hạn của hàm số có thể giải thích được nghịch lí Zénon nói trên là không đúng. Trong bài học ngày hôm nay chúng ta sẽ tìm hiểu về điều đó.Lời giải
Lời giải
a) Khi n ngày càng lớn thì giá trị của un càng giảm dần về 0.
b) Ta có bảng:
|
n |
1 000 |
1 001 |
... |
10 000 |
10 001 |
... |
|
|un – 0| |
0,001 |
0,00099... |
... |
0,0001 |
0,000099... |
... |
Kể từ số hạng u1001 trở đi thì khoảng cách từ un đến 0 nhỏ hơn 0,001.
Kể từ số hạng u10 001 trở đi thì khoảng cách từ un đến 0 nhỏ hơn 0,0001.
Lời giải
Lời giải
a) Ta có: un = 0 với mọi n ∈ ℕ*
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε với mọi n ∈ ℕ*
Vậy lim 0 = 0.
b) Ta có: un = \(\frac{1}{{\sqrt n }}\) với mọi n ∈ ℕ*
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε ⇔ \(\left| {\frac{1}{{\sqrt n }}} \right| < \varepsilon \Leftrightarrow \sqrt n > \frac{1}{\varepsilon } \Leftrightarrow n > \frac{1}{{{\varepsilon ^2}}}\).
Chọn N ≥ \(\frac{1}{{{\varepsilon ^2}}}\) thì với mọi n >N ta có: \(\left| {\frac{1}{{\sqrt n }}} \right| < \varepsilon \)
Vì vậy \(\lim \frac{1}{{\sqrt n }} = 0\).Lời giải
Lời giải
Ta có: un – 2 = 2 + \(\frac{1}{n}\) – 2 = \(\frac{1}{n}\)
Với mọi ε > 0 bé tùy ý, ta có:
|un – 0| < ε ⇔ \(\left| {\frac{1}{n}} \right| < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon }\).
Chọn N ≥ \(\frac{1}{\varepsilon }\) thì với mọi n > N ta có: \(\left| {\frac{1}{n}} \right| < \varepsilon \)
Vì vậy \(\lim \left( {{u_n} - 2} \right) = 0\).
Lời giải
Lời giải
Đặt un =\(\frac{{ - 4n + 1}}{n}\), suy ra un – 4 = \(\frac{{ - 4n + 1}}{n} - \left( { - 4} \right) = \frac{1}{n}\)
Do đó \(\lim \left( {{u_n} - \left( { - 4} \right)} \right) = \lim \frac{1}{n} = 0\).
\( \Rightarrow \lim {u_n} = - 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




