Câu hỏi:

11/07/2024 1,052

a) Tính tổng của cấp số nhân lùi vô hạn (u), với \({u_1} = \frac{2}{3},q = - \frac{1}{4}\).

b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Tổng của cấp số nhân lùi vô hạn (un), với \({u_1} = \frac{2}{3},q = - \frac{1}{4}\) là:

\(S = \lim \frac{{\frac{2}{3}\left[ {1 - {{\left( { - \frac{1}{4}} \right)}^n}} \right]}}{{1 - \left( { - \frac{1}{4}} \right)}} = \frac{{\frac{2}{3}}}{{\frac{5}{4}}} = \frac{8}{{15}}\).

b) Ta có:

1,(6) = 1 + 0,(6) = 1 + 0,6 + 0,06 + 0,006 + ... + 0,000006 + ...

Dãy số 0,6; 0,006; 0,0006; ... lập thành một cấp số nhân có số hạng đầu u1 = 0,6 và công bội q = \(\frac{1}{{10}}\) có |q| < 1 nên ta có:

0,6 + 0,06 + 0,006 + ... + 0,000006 + ... = \(\frac{{0,6}}{{1 - \frac{1}{{10}}}} = \frac{2}{3}\).

Suy ra 1,(6) = 1 + \(\frac{2}{3}\) = \(\frac{5}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.

a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n;

b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

Media VietJack

Xem đáp án » 12/07/2024 9,402

Câu 2:

Tính các giới hạn sau:

a) \(\lim \frac{{5n + 1}}{{2n}}\);

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}}\);

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}}\);

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right)\);

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}}\);

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\).

Xem đáp án » 11/07/2024 2,084

Câu 3:

Chứng minh rằng:

a) lim 0 = 0;

b) \(\lim \frac{1}{{\sqrt n }} = 0\).

Xem đáp án » 12/07/2024 1,666

Câu 4:

Gọi C là nửa đường tròn đường kính AB = 2R.

C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).

C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...

Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).

Gọi Pn là độ dài của C, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.

a) Tính pn, Sn.

b) Tìm giới hạn của các dãy số (pn) và (Sn).

Media VietJack

Xem đáp án » 12/07/2024 1,471

Câu 5:

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0\).

Xem đáp án » 31/07/2023 1,413

Câu 6:

Cho cấp số nhân (un), với u1 = 1 và công bội \(q = \frac{1}{2}\).

a) Hãy so sánh |q| với 1.

b) Tính Sn = u1 + u2 + ... + un. Từ đó, hãy tính limSn.

Xem đáp án » 12/07/2024 1,345

Câu 7:

Tính các giới hạn sau:

a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}}\);

b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}\).

Xem đáp án » 12/07/2024 1,303

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn