Câu hỏi:

12/07/2024 2,686

Chứng minh rằng:

a) lim 0 = 0;

b) \(\lim \frac{1}{{\sqrt n }} = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: un = 0 với mọi n ℕ*

Với mọi ε > 0 bé tùy ý, ta có:

|un – 0| < ε với mọi n ℕ*

Vậy lim 0 = 0.

b) Ta có: un = \(\frac{1}{{\sqrt n }}\) với mọi n ℕ*

Với mọi ε > 0 bé tùy ý, ta có:

|un – 0| < ε \(\left| {\frac{1}{{\sqrt n }}} \right| < \varepsilon \Leftrightarrow \sqrt n > \frac{1}{\varepsilon } \Leftrightarrow n > \frac{1}{{{\varepsilon ^2}}}\).

Chọn N ≥ \(\frac{1}{{{\varepsilon ^2}}}\) thì với mọi n >N ta có: \(\left| {\frac{1}{{\sqrt n }}} \right| < \varepsilon \)

Vì vậy \(\lim \frac{1}{{\sqrt n }} = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Gọi Sn là diện tích của hình vuông thứ n.

Ta có: S1 = 1; S2 = \(\frac{1}{2}\); S3 = \({\left( {\frac{1}{2}} \right)^2}\); ...

Dãy (Sn) lập thành cấp số nhân có số hạng đầu S1 = 1 và công bội q = \(\frac{1}{2}\) có công thức tổng quát là: Sn = \({\left( {\frac{1}{2}} \right)^{n - 1}}\).

b) Ta có: \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\) nên dãy (S) trên lập thành một cấp số nhân lùi hạn nên ta có:

\(S = 1 + \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + ... + {\left( {\frac{1}{2}} \right)^{n - 1}} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\).

Vậy tổng diện tích của các hình vuông là 2 (đvdt).

Lời giải

Lời giải

a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \left( {\frac{5}{2} + \frac{1}{{2n}}} \right) = \lim \frac{5}{2} + \lim \frac{1}{{2n}} = \frac{5}{2}\).

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{\lim \left( {6 + \frac{8}{n} + \frac{1}{{{n^2}}}} \right)}}{{\lim \left( {5 + \frac{3}{{{n^2}}}} \right)}} = \frac{6}{5}\).

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\lim \sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{\lim \left( {6 + \frac{2}{n}} \right)}} = \frac{1}{6}\).

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\).

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right]}}{{\lim 4}} = \frac{1}{4}\).

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = \frac{{\lim \left( {2 + \frac{1}{n}} \right)}}{{\lim {3^n}}} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP