Câu hỏi:
12/07/2024 4,693
Gọi C là nửa đường tròn đường kính AB = 2R.
C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).
C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...
Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).
Gọi Pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.
a) Tính pn, Sn.
b) Tìm giới hạn của các dãy số (pn) và (Sn).

Gọi C là nửa đường tròn đường kính AB = 2R.
C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).
C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...
Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).
Gọi Pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.
a) Tính pn, Sn.
b) Tìm giới hạn của các dãy số (pn) và (Sn).
Quảng cáo
Trả lời:
Lời giải
a)
+) Ta có: p1 = \(\frac{{\pi R}}{2}\); p2 = \(\frac{{\pi R}}{4} = \frac{{\pi R}}{{{2^2}}}\); p3 = \(\frac{{\pi R}}{8} = \frac{{\pi R}}{{{2^3}}}\); ...
(pn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu p1 = \(\frac{{\pi R}}{2}\) và công bội \(q = \frac{1}{2} < 1\) có số hạng tổng quát pn = \(\frac{{\pi R}}{2}.{\left( {\frac{1}{2}} \right)^{n - 1}}\).
+) Ta có: C1 = \(\frac{{\pi {R^2}}}{4}\); C2 = \(\frac{{\pi {R^2}}}{{{4^2}}}\); C3 = \(\frac{{\pi {R^3}}}{{{4^3}}}\); ...
(Cn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu C1 = \(\frac{{\pi {R^2}}}{4}\) và công bội \(q = \frac{1}{4} < 1\) có số hạng tổng quát Cn = \(\frac{{\pi R}}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Gọi Sn là diện tích của hình vuông thứ n.
Ta có: S1 = 1; S2 = \(\frac{1}{2}\); S3 = \({\left( {\frac{1}{2}} \right)^2}\); ...
Dãy (Sn) lập thành cấp số nhân có số hạng đầu S1 = 1 và công bội q = \(\frac{1}{2}\) có công thức tổng quát là: Sn = \({\left( {\frac{1}{2}} \right)^{n - 1}}\).
b) Ta có: \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\) nên dãy (Sn) trên lập thành một cấp số nhân lùi hạn nên ta có:
\(S = 1 + \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + ... + {\left( {\frac{1}{2}} \right)^{n - 1}} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\).
Vậy tổng diện tích của các hình vuông là 2 (đvdt).
Lời giải
Lời giải
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \left( {\frac{5}{2} + \frac{1}{{2n}}} \right) = \lim \frac{5}{2} + \lim \frac{1}{{2n}} = \frac{5}{2}\).
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{\lim \left( {6 + \frac{8}{n} + \frac{1}{{{n^2}}}} \right)}}{{\lim \left( {5 + \frac{3}{{{n^2}}}} \right)}} = \frac{6}{5}\).
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\lim \sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{\lim \left( {6 + \frac{2}{n}} \right)}} = \frac{1}{6}\).
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\).
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right]}}{{\lim 4}} = \frac{1}{4}\).
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = \frac{{\lim \left( {2 + \frac{1}{n}} \right)}}{{\lim {3^n}}} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.