Câu hỏi:

12/07/2024 4,493

Gọi C là nửa đường tròn đường kính AB = 2R.

C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).

C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...

Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).

Gọi Pn là độ dài của C, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.

a) Tính pn, Sn.

b) Tìm giới hạn của các dãy số (pn) và (Sn).

Media VietJack

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

+) Ta có: p1 = \(\frac{{\pi R}}{2}\); p2 = \(\frac{{\pi R}}{4} = \frac{{\pi R}}{{{2^2}}}\); p3 = \(\frac{{\pi R}}{8} = \frac{{\pi R}}{{{2^3}}}\); ...

(pn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu p1 = \(\frac{{\pi R}}{2}\) và công bội \(q = \frac{1}{2} < 1\) có số hạng tổng quát pn = \(\frac{{\pi R}}{2}.{\left( {\frac{1}{2}} \right)^{n - 1}}\).

+) Ta có: C1 = \(\frac{{\pi {R^2}}}{4}\); C2 = \(\frac{{\pi {R^2}}}{{{4^2}}}\); C3 = \(\frac{{\pi {R^3}}}{{{4^3}}}\); ...

(Cn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu C1 = \(\frac{{\pi {R^2}}}{4}\) và công bội \(q = \frac{1}{4} < 1\) có số hạng tổng quát Cn = \(\frac{{\pi R}}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.

a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n;

b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

Media VietJack

Xem đáp án » 12/07/2024 25,003

Câu 2:

Tính các giới hạn sau:

a) \(\lim \frac{{5n + 1}}{{2n}}\);

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}}\);

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}}\);

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right)\);

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}}\);

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\).

Xem đáp án » 11/07/2024 7,731

Câu 3:

Cho hai dãy số (un), (vn) với un = 3 + \(\frac{1}{n}\), vn = 5 – \(\frac{2}{{{n^2}}}\). Tính các giới hạn sau:

a) limun, limvn;

b) lim(un + vn), lim(un – vn), lim(un.vn), lim\(\frac{{{u_n}}}{{{v_n}}}\).

Xem đáp án » 12/07/2024 4,412

Câu 4:

Tính các giới hạn sau:

a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}}\);

b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}\).

Xem đáp án » 12/07/2024 3,355

Câu 5:

Tính lim(– n3).

Xem đáp án » 12/07/2024 3,035

Câu 6:

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0\).

Xem đáp án » 31/07/2023 2,566