Câu hỏi:
12/07/2024 4,518
Cho hai dãy số (un), (vn) với un = 3 + \(\frac{1}{n}\), vn = 5 – \(\frac{2}{{{n^2}}}\). Tính các giới hạn sau:
a) limun, limvn;
b) lim(un + vn), lim(un – vn), lim(un.vn), lim\(\frac{{{u_n}}}{{{v_n}}}\).
Cho hai dãy số (un), (vn) với un = 3 + \(\frac{1}{n}\), vn = 5 – \(\frac{2}{{{n^2}}}\). Tính các giới hạn sau:
a) limun, limvn;
b) lim(un + vn), lim(un – vn), lim(un.vn), lim\(\frac{{{u_n}}}{{{v_n}}}\).
Quảng cáo
Trả lời:
Lời giải
a) Ta có:
limun = lim(3 + \(\frac{1}{n}\)) = lim3 + \(\lim \frac{1}{n}\) = 3 + 0 = 3.
limvn = lim(5 – \(\frac{2}{{{n^2}}}\)) = lim5 – lim\(\frac{2}{{{n^2}}}\) = 5 – 0 = 5.
b) lim(un + vn) = limun + limvn = 3 + 5 = 8.
lim(un – vn) = limun – limvn = 3 – 5 = – 2.
lim(un.vn) = limun.limvn = 3.5 = 15.
lim\(\frac{{{u_n}}}{{{v_n}}}\)= \(\frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Gọi Sn là diện tích của hình vuông thứ n.
Ta có: S1 = 1; S2 = \(\frac{1}{2}\); S3 = \({\left( {\frac{1}{2}} \right)^2}\); ...
Dãy (Sn) lập thành cấp số nhân có số hạng đầu S1 = 1 và công bội q = \(\frac{1}{2}\) có công thức tổng quát là: Sn = \({\left( {\frac{1}{2}} \right)^{n - 1}}\).
b) Ta có: \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\) nên dãy (Sn) trên lập thành một cấp số nhân lùi hạn nên ta có:
\(S = 1 + \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + ... + {\left( {\frac{1}{2}} \right)^{n - 1}} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\).
Vậy tổng diện tích của các hình vuông là 2 (đvdt).
Lời giải
Lời giải
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \left( {\frac{5}{2} + \frac{1}{{2n}}} \right) = \lim \frac{5}{2} + \lim \frac{1}{{2n}} = \frac{5}{2}\).
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{\lim \left( {6 + \frac{8}{n} + \frac{1}{{{n^2}}}} \right)}}{{\lim \left( {5 + \frac{3}{{{n^2}}}} \right)}} = \frac{6}{5}\).
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\lim \sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{\lim \left( {6 + \frac{2}{n}} \right)}} = \frac{1}{6}\).
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\).
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right]}}{{\lim 4}} = \frac{1}{4}\).
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = \frac{{\lim \left( {2 + \frac{1}{n}} \right)}}{{\lim {3^n}}} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.