Câu hỏi:
12/07/2024 711Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Giả sử vận tốc của Asin gấp đôi vận tốc của chú rùa và khoảng cách lúc đầu là a.
Khi Asin chạy được a thì chú rùa chạy được \(\frac{a}{2}\).
Khi Asin chạy tiếp được \(\frac{a}{2}\) thì chú rùa chạy được \(\frac{a}{4}\).
Do đó tổng quãng đường Asin phải chạy để đuổi kịp chú rùa là:
\(a + \frac{a}{2} + \frac{a}{4} + \frac{a}{8} + ...\)
Theo lập luận của Asin tổng này là tổng vô hạn nên không bao giờ Asin đuổi kịp chú rùa.
Tuy nhiên các số hạng của tổng này lập thành một cấp số nhân với số hạng đầu u1 = a và công bội q = \(\frac{1}{2}\) < 1.
Nên ta có tổng của cấp số nhân lùi vô hạn bằng:
\(S = a + \frac{a}{2} + \frac{a}{4} + \frac{a}{8} + ... = \lim \frac{{a\left[ {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right]}}{{1 - \frac{1}{2}}} = 2a\).
Vì vậy tổng này là hữu hạn do đó Asin hoàn toàn có thể chạy để đuổi kịp rùa.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.
a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n;
b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.
Câu 2:
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}}\);
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}}\);
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}}\);
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right)\);
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}}\);
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\).
Câu 3:
Chứng minh rằng:
a) lim 0 = 0;
b) \(\lim \frac{1}{{\sqrt n }} = 0\).
Câu 4:
Gọi C là nửa đường tròn đường kính AB = 2R.
C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).
C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...
Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).
Gọi Pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.
a) Tính pn, Sn.
b) Tìm giới hạn của các dãy số (pn) và (Sn).
Câu 6:
Cho cấp số nhân (un), với u1 = 1 và công bội \(q = \frac{1}{2}\).
a) Hãy so sánh |q| với 1.
b) Tính Sn = u1 + u2 + ... + un. Từ đó, hãy tính limSn.
Câu 7:
Tính các giới hạn sau:
a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}}\);
b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}\).
về câu hỏi!