Câu hỏi:

12/07/2024 1,525

Giải thích vì sao nghịch lí Zénon trong phần mở đầu là không đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Giả sử vận tốc của Asin gấp đôi vận tốc của chú rùa và khoảng cách lúc đầu là a.

Khi Asin chạy được a thì chú rùa chạy được \(\frac{a}{2}\).

Khi Asin chạy tiếp được \(\frac{a}{2}\) thì chú rùa chạy được \(\frac{a}{4}\).

Do đó tổng quãng đường Asin phải chạy để đuổi kịp chú rùa là:

\(a + \frac{a}{2} + \frac{a}{4} + \frac{a}{8} + ...\)

Theo lập luận của Asin tổng này là tổng vô hạn nên không bao giờ Asin đuổi kịp chú rùa.

Tuy nhiên các số hạng của tổng này lập thành một cấp số nhân với số hạng đầu u1 = a và công bội q = \(\frac{1}{2}\) < 1.

Nên ta có tổng của cấp số nhân lùi vô hạn bằng:

\(S = a + \frac{a}{2} + \frac{a}{4} + \frac{a}{8} + ... = \lim \frac{{a\left[ {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right]}}{{1 - \frac{1}{2}}} = 2a\).

Vì vậy tổng này là hữu hạn do đó Asin hoàn toàn có thể chạy để đuổi kịp rùa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Gọi Sn là diện tích của hình vuông thứ n.

Ta có: S1 = 1; S2 = \(\frac{1}{2}\); S3 = \({\left( {\frac{1}{2}} \right)^2}\); ...

Dãy (Sn) lập thành cấp số nhân có số hạng đầu S1 = 1 và công bội q = \(\frac{1}{2}\) có công thức tổng quát là: Sn = \({\left( {\frac{1}{2}} \right)^{n - 1}}\).

b) Ta có: \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\) nên dãy (S) trên lập thành một cấp số nhân lùi hạn nên ta có:

\(S = 1 + \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + ... + {\left( {\frac{1}{2}} \right)^{n - 1}} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\).

Vậy tổng diện tích của các hình vuông là 2 (đvdt).

Lời giải

Lời giải

a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \left( {\frac{5}{2} + \frac{1}{{2n}}} \right) = \lim \frac{5}{2} + \lim \frac{1}{{2n}} = \frac{5}{2}\).

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{\lim \left( {6 + \frac{8}{n} + \frac{1}{{{n^2}}}} \right)}}{{\lim \left( {5 + \frac{3}{{{n^2}}}} \right)}} = \frac{6}{5}\).

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\lim \sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{\lim \left( {6 + \frac{2}{n}} \right)}} = \frac{1}{6}\).

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\).

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right]}}{{\lim 4}} = \frac{1}{4}\).

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = \frac{{\lim \left( {2 + \frac{1}{n}} \right)}}{{\lim {3^n}}} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP