Câu hỏi:

11/07/2024 582

Zénon (Zê – nông, 496 – 429 trước Công Nguyên) là một triết gia Hy Lạp ở thành phố Edée đã phát biểu nghịch lí như sau: Achilles (A – sin) là một lực sĩ trong thần thoại Hy Lạp, người được mệnh danh là “có đôi chân chạy nhanh như gió” đuổi theo một con rùa trên một đường thẳng. Nếu lúc xuất phát, rùa ở điểm A1 cách Achilles một khoảng bằng a khác 0. Khi Achilles chạy đến vị trí của rùa xuất phát thì rùa chạy về phía trước một khoảng (như Hình 1). Quá trình này tiếp tục vô hạn. Vì thế, Achilles không bao giờ đuổi kịp rùa.

Trên thực tế, Achilles không đuổi kịp rùa là vô lí. Kiến thức toán học nào có thể giải thích được nghịch lí Zénon nói trên là không đúng?

Media VietJack

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Giới hạn hữu hạn của hàm số có thể giải thích được nghịch lí Zénon nói trên là không đúng. Trong bài học ngày hôm nay chúng ta sẽ tìm hiểu về điều đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn.

a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n;

b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

Media VietJack

Xem đáp án » 12/07/2024 23,659

Câu 2:

Tính các giới hạn sau:

a) \(\lim \frac{{5n + 1}}{{2n}}\);

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}}\);

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}}\);

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right)\);

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}}\);

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\).

Xem đáp án » 11/07/2024 7,518

Câu 3:

Cho hai dãy số (un), (vn) với un = 3 + \(\frac{1}{n}\), vn = 5 – \(\frac{2}{{{n^2}}}\). Tính các giới hạn sau:

a) limun, limvn;

b) lim(un + vn), lim(un – vn), lim(un.vn), lim\(\frac{{{u_n}}}{{{v_n}}}\).

Xem đáp án » 12/07/2024 4,260

Câu 4:

Gọi C là nửa đường tròn đường kính AB = 2R.

C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\).

C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\), ...

Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{{2^n}}},...\)(Hình 4).

Gọi Pn là độ dài của C, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.

a) Tính pn, Sn.

b) Tìm giới hạn của các dãy số (pn) và (Sn).

Media VietJack

Xem đáp án » 12/07/2024 4,196

Câu 5:

Tính các giới hạn sau:

a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}}\);

b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}\).

Xem đáp án » 12/07/2024 3,210

Câu 6:

Tính lim(– n3).

Xem đáp án » 12/07/2024 2,873

Câu 7:

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0\).

Xem đáp án » 31/07/2023 2,469

Bình luận


Bình luận