Câu hỏi:

13/07/2024 1,321

Cho \(a = \frac{\pi }{6},b = \frac{\pi }{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với \(a = \frac{\pi }{6}\) ta có \[\sin a = \sin \frac{\pi }{6} = \frac{1}{2}\]; \(\cos a = \cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\).

Với \(b = \frac{\pi }{3}\) ta có \[\sin b = \sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\]; \(\cos b = \cos \frac{\pi }{3} = \frac{1}{2}\).

Ta có \(\sin \left( {a + b} \right) = \sin \left( {\frac{\pi }{6} + \frac{\pi }{3}} \right) = \sin \frac{\pi }{2} = 1\);

          \[\sin a\cos b + \cos a\sin b = \frac{1}{2}.\frac{1}{2} + \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} = \frac{1}{4} + \frac{3}{4} = 1\]

Do đó sin(a + b) = sina cosb + cosa sinb (vì cùng bằng 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 44,918

Câu 2:

Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Xem đáp án » 13/07/2024 25,014

Câu 3:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 13/07/2024 18,231

Câu 4:

Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

\(B = cos\left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\).

Xem đáp án » 13/07/2024 17,883

Câu 5:

Cho sina + cosa = 1. Tính: sin2a.

Xem đáp án » 13/07/2024 16,955

Câu 6:

Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).

Xem đáp án » 13/07/2024 13,754

Câu 7:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 13/07/2024 13,678

Bình luận


Bình luận
Vietjack official store