Câu hỏi:
12/07/2024 3,528
Cho tam giác ABC, chứng minh rằng:
tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
Cho tam giác ABC, chứng minh rằng:
tan A + tan B + tan C = tan A . tan B . tan C (với điều kiện tam giác ABC không vuông);
Quảng cáo
Trả lời:
Vì tam giác ABC không vuông nên A, B, C khác \(\frac{\pi }{2}\), do đó tan A, tan B, tan C xác định.
Do A + B + C = π nên A + B = π – C, do đó tan(A + B) = tan(π – C) = tan(– C) = – tanC.
Mà \(\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\).
Khi đó \(\frac{{\tan A + \tan B}}{{1 - \tan A\,\tan B}} = - \tan C\)
⇔ tan A + tan B = – tan C . (1 – tan A . tan B)
⇔ tan A + tan B = – tan C + tan A . tan B . tan C
⇔ tan A + tan B + tan C = tan A . tan B . tan C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có sin4 x + cos4 x = 1 – 2sin2 x cos2 x (theo Bài 9a)
= 1 – 2 (sin x cos x)2 = \(1 - 2{\left( {\frac{{\sin 2x}}{2}} \right)^2} = 1 - 2.\frac{{{{\sin }^2}2x}}{4} = 1 - \frac{{2\left( {1 - {{\cos }^2}2x} \right)}}{4}\)
\( = 1 - \frac{{2 - 2{{\cos }^2}2x}}{4} = \frac{{4 - 2 + 2{{\cos }^2}2x}}{4}\)\( = \frac{{3 + \left( {2{{\cos }^2}2x - 1} \right)}}{4} = \frac{{3 + \cos 4x}}{4}\).
Vậy \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{4}\).
Lời giải
Ta có \(\frac{{A + B + C}}{2} = \frac{\pi }{2}\), suy ra \(\frac{A}{2} + \frac{B}{2} = \frac{\pi }{2} - \frac{C}{2}\) nên \(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \cot \frac{C}{2}\)
\( \Leftrightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}.\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\)
\( \Leftrightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}.\tan \frac{B}{2}\)
\( \Leftrightarrow \tan \frac{A}{2}.\tan \frac{C}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{A}{2}.\tan \frac{B}{2} = 1\)
\( \Leftrightarrow \tan \frac{A}{2}.\tan \frac{B}{2} + \tan \frac{B}{2}.\tan \frac{C}{2} + \tan \frac{C}{2}.\tan \frac{A}{2} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.