Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + 1} \right) = 2\) và f(1) = 13 + 1 = 2
Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).
Vì vậy hàm số liên tục tại x0 = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) f(x) = x2 + sinx;
b) g(x) = x4 – x2 + \(\frac{6}{{x - 1}}\);
c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\).
Câu 3:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1\,\,khi\,\,x \ne 4\\2a + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 4.\end{array} \right.\)
a) Với a = 0, xét tính liên tục của hàm số tại x = 4.
b) Với giá trị nào của a thì hàm số liên tục tại x = 4?
c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?
Câu 4:
Câu 5:
Câu 7:
Hình 16 biểu thị độ cao h(m) của một quả bóng đá lên theo thời gian t(s), trong đó h(t) = – 2t2 + 8t.
a) Chứng tỏ hàm số h(t) liên tục trên tập xác định.
b) Dựa vào đồ thị hãy xác định \(\mathop {\lim }\limits_{t \to 2} \left( { - 2{t^2} + 8t} \right)\).
về câu hỏi!