Câu hỏi:

13/07/2024 1,510

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1\,\,khi\,\,x \ne 4\\2a + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 4.\end{array} \right.\)

a) Với a = 0, xét tính liên tục của hàm số tại x = 4.

b) Với giá trị nào của a thì hàm số liên tục tại x = 4?

c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Với a = 0, tại x = 4, ta có:

\(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\) và f(4) = 2.0 + 1 = 1

Suy ra \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) \ne f\left( 4 \right)\).

Vì vậy hàm số không liên tục tại x = 4.

b) Ta có: \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \left( {{x^2} + x + 1} \right) = {4^2} + 4 + 1 = 21\) và f(4) = 2.a + 1

Để hàm số liên tục tại x = 4 thì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = f\left( 4 \right)\)

21 = 2a + 1

2a = 20

a = 10

Vậy với a = 10 thì hàm số liên tục tại x = 4.

c) Với x (– ∞; 4) có f(x) = x2 + x + 1 liên tục với mọi x thuộc khoảng này.

Với  x (4; +∞) có f(x) = 2a + 1 liên tục với mọi x thuộc khoảng này.

Tại x = 4 thì a = 10 hàm số liên tục.

Vậy với a = 10 hàm số liên tục trên tập xác định của nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng định nghĩa xét tính liên tục của hàm số f(x) = 2x3 + x + 1 tại điểm x = 2.

Xem đáp án » 13/07/2024 2,532

Câu 2:

Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:

a) f(x) = x2 + sinx;

b) g(x) = x4 – x2 + \(\frac{6}{{x - 1}}\);

c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\).

Xem đáp án » 13/07/2024 2,391

Câu 3:

Bạn Nam cho rằng: “Nếu hàm số y = f(x) liên tục tại điểm x0, còn hàm số y = g(x) không liên tục tại x0, thì hàm số y = f(x) + g(x) không liên tục tại x0”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.

Xem đáp án » 13/07/2024 1,660

Câu 4:

Trong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.
Media VietJack

Xem đáp án » 13/07/2024 1,337

Câu 5:

Xét tính liên tục của hàm số f(x) = sinx + cosx trên ℝ.

Xem đáp án » 13/07/2024 1,125

Câu 6:

Xét tính liên tục của hàm số f(x) = x3 + 1 tại x0 = 1.

Xem đáp án » 13/07/2024 885

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store