Câu hỏi:
13/07/2024 361Cho hàm số f(x) = x + 1 với x ∈ ℝ.
a) Giả sử x0 ∈ ℝ. Hàm số f(x) có liên tục tại điểm x0 hay không?
b) Quan sát đồ thị hàm số f(x) = x + 1 với x ∈ ℝ (Hình 13), nêu nhận xét về đặc điểm của đồ thị hàm số đó.
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 3. Hàm số liên tục có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Với x0 ∈ ℝ bất kì ta có: \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = {x_0} + 1 = f\left( {{x_0}} \right)\). Do đó hàm số liên tục tại x = x0.
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị x ∈ ℝ.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1\,\,khi\,\,x \ne 4\\2a + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 4.\end{array} \right.\)
a) Với a = 0, xét tính liên tục của hàm số tại x = 4.
b) Với giá trị nào của a thì hàm số liên tục tại x = 4?
c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?
Câu 2:
Câu 3:
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) f(x) = x2 + sinx;
b) g(x) = x4 – x2 + \(\frac{6}{{x - 1}}\);
c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\).
Câu 4:
Câu 5:
Hình 16 biểu thị độ cao h(m) của một quả bóng đá lên theo thời gian t(s), trong đó h(t) = – 2t2 + 8t.
a) Chứng tỏ hàm số h(t) liên tục trên tập xác định.
b) Dựa vào đồ thị hãy xác định \(\mathop {\lim }\limits_{t \to 2} \left( { - 2{t^2} + 8t} \right)\).
Câu 6:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận