Câu hỏi:

13/07/2024 47,839

Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.

a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.

b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm là:

\(\overline C \left( x \right) = \frac{{50{\rm{ }}000{\rm{ }} + {\rm{ }}105x}}{x}\) (sản phẩm).

b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{50{\rm{ }}000{\rm{ }} + {\rm{ }}105x}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {\frac{{50{\rm{ }}000}}{x}{\rm{ }} + {\rm{ }}105} \right)}}{x}\)

\( = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{50{\rm{ }}000}}{x}{\rm{ }} + {\rm{ }}105} \right) = 105\).

Ý nghĩa: Khi số sản phẩm sản xuất ra ngày càng nhiều thì chi phí trung bình chỉ tối đa là 105 nghìn đồng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một công ty sản xuất máy tính đã xác định được rằng, trung bình một nhân viên có thể lắp ráp được \(N\left( t \right) = \frac{{50t}}{{t + 4}}\left( {t \ge 0} \right)\) bộ phận mỗi ngày sau t ngày đào tạo. Tính \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\) và cho biết ý nghĩa của kết quả.

Xem đáp án » 13/07/2024 21,748

Câu 2:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right)\);

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}}\);

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).

Xem đáp án » 13/07/2024 9,358

Câu 3:

Biết rằng hàm số f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\). Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.

Xem đáp án » 13/07/2024 4,907

Câu 4:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}}\);

b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}}\);

c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);

e) \(\mathop {\lim }\limits_{x \to 6} \frac{1}{{x - 6}}\);

f) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}\).

Xem đáp án » 13/07/2024 3,933

Câu 5:

Sử dụng định nghĩa, tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - 3} {x^2}\);

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}\).

Xem đáp án » 13/07/2024 2,828

Câu 6:

Cho hàm số f(x) = x2 – 1, g(x) = x + 1.

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).

Xem đáp án » 13/07/2024 1,908