Câu hỏi:
13/07/2024 1,127Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 1\,\,khi\,\,x < 0\\0\,\,\,\,\,khi\,\,x = 0\\1\,\,\,\,\,\,khi\,\,x > 0\end{array} \right.\). Hàm số f(x) có đồ thị ở Hình 6.
a) Xét dãy số (un) sao cho un < 0 và lim un = 0. Xác định f(un) và tìm lim f(un).
b) Xét dãy số (vn) sao cho vn > 0 và lim vn = 0. Xác định f(vn) và tìm limf(vn).
Quảng cáo
Trả lời:
Lời giải
a) Xét dãy số (un) sao cho un < 0 và lim un = 0. Khi đó f(un) = – 1 và lim f(un) = – 1.
b) Xét dãy số (vn) sao cho vn > 0 và lim vn = 0. Khi đó f(vn) = 1 và lim f(vn) = 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.
Câu 2:
Câu 3:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right)\);
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).
Câu 4:
Câu 5:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}}\);
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);
e) \(\mathop {\lim }\limits_{x \to 6} \frac{1}{{x - 6}}\);
f) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}\).
Câu 6:
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2}\);
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}\).
Câu 7:
Cho hàm số f(x) = x2 – 1, g(x) = x + 1.
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận