Câu hỏi:

01/08/2023 567

Sử dụng định nghĩa, chứng minh rằng:

\(\mathop {{\mathop{\rm l}\nolimits} i{\rm{m}}}\limits_{x \to 2} {{\rm{x}}^2} = 4\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đặt f(x) = x2

Giả sử (xn) là dãy số thỏa mãn limxn = 2.

limf(xn) = \(\lim x_n^2 = {2^2} = 4\).

Vậy \(\mathop {{\mathop{\rm l}\nolimits} i{\rm{m}}}\limits_{x \to 2} {{\rm{x}}^2} = 4\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.

a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.

b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.

Xem đáp án » 13/07/2024 47,798

Câu 2:

Một công ty sản xuất máy tính đã xác định được rằng, trung bình một nhân viên có thể lắp ráp được \(N\left( t \right) = \frac{{50t}}{{t + 4}}\left( {t \ge 0} \right)\) bộ phận mỗi ngày sau t ngày đào tạo. Tính \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\) và cho biết ý nghĩa của kết quả.

Xem đáp án » 13/07/2024 21,722

Câu 3:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right)\);

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}}\);

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).

Xem đáp án » 13/07/2024 9,350

Câu 4:

Biết rằng hàm số f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\). Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.

Xem đáp án » 13/07/2024 4,904

Câu 5:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}}\);

b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}}\);

c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\);

e) \(\mathop {\lim }\limits_{x \to 6} \frac{1}{{x - 6}}\);

f) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}\).

Xem đáp án » 13/07/2024 3,930

Câu 6:

Sử dụng định nghĩa, tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - 3} {x^2}\);

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}\).

Xem đáp án » 13/07/2024 2,827

Câu 7:

Cho hàm số f(x) = x2 – 1, g(x) = x + 1.

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).

Xem đáp án » 13/07/2024 1,903