Cho dãy số (un), biết \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\).
Chứng minh rằng un + 4 = un với mọi n ≥ 1.
Cho dãy số (un), biết \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\).
Chứng minh rằng un + 4 = un với mọi n ≥ 1.
Câu hỏi trong đề: Giải SBT Toán 11 Cánh Diều Dãy số có đáp án !!
Quảng cáo
Trả lời:
Ta có \({u_{n + 4}} = \sin \left[ {\left( {2.\left( {n + 4} \right) - 1} \right)\frac{\pi }{4}} \right]\)\( = \sin \left[ {\left( {2n + 8 - 1} \right)\frac{\pi }{4}} \right]\)
\( = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4} + 8.\frac{\pi }{4}} \right]\)\( = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4} + 2\pi } \right]\)
\( = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right] = {u_n}\), \(\forall n \ge 1\).
Vậy un + 4 = un với mọi n ≥ 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có un + 1 = 3n + 1 = 3n . 31 = 3n . 3.
Lời giải
Ta thấy đường tròn được chia thành n + 6 cung bằng nhau và mỗi cung có số đo bằng \(\left( {\frac{{360}}{{n + 6}}} \right)\begin{array}{*{20}{c}}^\circ \\{}\end{array}\). Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn nên góc ở đỉnh của mỗi ngôi sao là góc nội tiếp chắn n + 6 – 2 . 3 = n cung bằng nhau đó. Suy ra số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao là \({u_n} = \frac{1}{2}.\frac{{360}}{{n + 6}}.n = \frac{{180n}}{{n + 6}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.