Câu hỏi:

11/07/2024 887

Cho dãy số (un), biết \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\).

Tính tổng 12 số hạng đầu của dãy số.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo câu b) ta có un + 4 = un với mọi n ≥ 1.

Do đó, u1 = u5 = u9, u2 = u6 = u10, u3 = u7 = u11, u4 = u8 = u12.

Tổng 12 số hạng đầu của dãy số là:

u1 + u2 + u3 + u4 + ... + u12 = 3(u1 + u2 + u3 + u4)

                                      = \(3\left( {\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} + \frac{{ - \sqrt 2 }}{2} + \frac{{ - \sqrt 2 }}{2}} \right) = 0\).   

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có un + 1 = 3n + 1 = 3n . 31 = 3n . 3.

Lời giải

Ta có un + 1 = 3n + 1 – (n + 1) = 3 . 3n – n – 1.

Xét un + 1 – u­n = (3 . 3n – n – 1) – (3n – n) = 3 . 3n – 3n – 1 = 2 . 3n – 1 > 0 với mọi n *.

Do đó, un + 1 > un với mọi n *.

Vậy dãy số (un) với u­n = 3n – n là dãy số tăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP