Câu hỏi:
13/07/2024 879
Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.
Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.
Câu hỏi trong đề: Giải VTH Toán 8 KNTT Luyện tập chung đáp án !!
Quảng cáo
Trả lời:

(H.3.41). Gọi H là giao điểm của AE với MN.
Xét hai tam giác vuông ADM và AHM có: AM là cạnh chung,
⇒ ∆ADM = ∆AHM (cạnh huyền – góc nhọn)
⇒ MD = MH và AD = AH.
Xét hai tam giác vuông AHN và ABN có:
AN là cạnh chung, AH = AB (vì cùng bằng AD).
⇒ ∆AHN = ∆ABN (cạnh huyền – cạnh góc vuông) ⇒ HN = BN.
Vậy DM + BN = MH + HN = MN.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

(H.3.38). a) Tứ giác AMCP có NC = NA, NM = NP nên AMCP là hình bình hành vì hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.
b) Hình bình hành AMCP là hình chữ nhật khi góc AMC là góc vuông. Góc AMC là góc vuông khi trung tuyến CM cũng là đường cao của tam giác ABC, tức là tam giác ABC cân tại C.
+) Hình bình hành AMCP là hình thoi khi và chỉ khi có hai cạnh kề bằng nhau AM = CM, tức là MC = MA = MC; khi đó tam giác CBA vuông tại C.
+) Từ hai phần trên, suy ra tứ giác AMCP là hình vuông khi và chỉ khi tam giác ABC vuông cân tại C.
Lời giải

(H.3.42). a) Xét hai tam giác PIN và MIQ có (hai góc đối đỉnh), QI = IN, (do NP // QM)
⇒ ∆PIN = ∆MIQ (g.c.g)
⇒ QM = NP.
b) Tứ giác MNPQ có PN // MQ, QM = NP nên là hình bình hành.
Ta chứng minh MNPQ có hai đường chéo vuông góc.
Vì AQ ⊥ AN nên
Xét hai tam giác vuông ADQ và ABN có AD = AB, (chứng minh trên).
⇒ ∆ADQ = ∆ABN (cạnh góc vuông – góc nhọn)
⇒ AQ = AN.
Do đó tam giác AQN cân tại A, mà AI là đường trung tuyến của tam giác AQN
⇒ AI là đường cao của tam giác AQN, tức là AI ⊥ QN, hay PM ⊥ QN.
Hình bình hành MNPQ có hai đường chéo PM ⊥ QN nên là hình thoi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.