Câu hỏi:

13/07/2024 1,176

Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E lần lượt là trung điểm của AB, AC. Lấy M là điểm trên DH sao cho MD = DH. Chứng minh rằng:

a) Tứ giác ADHE là hình thoi.

b) Tứ giác AHBM là hình chữ nhật.

c) Tứ giác ACHM là hình bình hành.

d) Ba đường thẳng MC, DE, AH đồng quy.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E lần lượt là trung điểm của AB, AC. Lấy M là điểm trên DH sao cho MD = DH. Chứng minh rằng: a) Tứ giác ADHE là hình thoi. b) Tứ giác AHBM là hình chữ nhật. c) Tứ giác ACHM là hình bình hành. d) Ba đường thẳng MC, DE, AH đồng quy. (ảnh 1)

(H.3.47). a) Ta có AE = EC, CH = HB ⇒ HE là đường trung bình của ∆CAB.

⇒ HE // AC, HE = 12AC = AD.

⇒ Tứ giác ADHE là hình bình hành.

∆ABC cân tại A nên AB = AC.

⇒ AE = 12AC = 12AB = AD.

Vậy hình bình hành ADHE có hai cạnh kề nhau bằng nhau nên là hình thoi.

b) Ta có MD = DH, DA = AB nên tứ giác AHBM có hai đường chéo AB và MH cắt nhau tại trung điểm mỗi đường nên là hình bình hành, hơn nữa AHC^=90°, suy ra AHBM là hình chữ nhật.

c) Tứ giác AHBM là hình chữ nhật nên AM // BH, AM = BH.

∆ABC cân tại A, AH ⊥ BC nên BH = CH.

Tứ giác ACHM có AM // CH, AM = CH nên là hình bình hành.

d) Tứ giác ACHM là hình bình hành nên MC, AH cắt nhau tại trung điểm mỗi đường. Tứ giác ADHE là hình thoi nên AH, DE cắt nhau tại trung điểm mỗi đường.

Vậy MC, DE, AH cắt nhau tại cùng một điểm nên chúng đồng quy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45).

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45).   a) Chứng minh hai tam giác vuông CMP và MBN bằng nhau. b) Chứng minh tứ giác APMN là một hình chữ nhật. Từ đó suy ra N là trung điểm của AB, P là trung điểm của AC. c) Lấy điểm Q sao cho P là trung điểm của MQ, chứng minh tứ giác AMCQ là một hình thoi. d) Nếu AB = AC, tức là tam giác ABC vuông cân tại A thì tứ giác AMCQ có là hình vuông không? Vì sao? (ảnh 1)


a) Chứng minh hai tam giác vuông CMP và MBN bằng nhau.

b) Chứng minh tứ giác APMN là một hình chữ nhật.

Từ đó suy ra N là trung điểm của AB, P là trung điểm của AC.

c) Lấy điểm Q sao cho P là trung điểm của MQ, chứng minh tứ giác AMCQ là một hình thoi.

d) Nếu AB = AC, tức là tam giác ABC vuông cân tại A thì tứ giác AMCQ có là hình vuông không? Vì sao?

Xem đáp án » 13/07/2024 25,403

Câu 2:

Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?

a) Tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào cũng bằng nhau là hình chữ nhật.

b) Tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.

c) Tứ giác có hai cạnh song song và hai đường chéo bằng nhau là hình thang cân.

d) Tứ giác có hai cạnh song song và hai cạnh còn lại bằng nhau là hình bình hành.

Xem đáp án » 13/07/2024 8,933

Câu 3:

Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E, K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống MEvà từ M xuống AB (H.3.46).

Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E, K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống MEvà từ M xuống AB (H.3.46).   Chứng minh rằng: a) Tứ giác BKEN là hình chữ nhật. b) BK bằng hiệu khoảng cách từ M đến AC và đến AB (dù M thay đổi trên đường thẳng BC miễn là B nằm giữa M và C) tức là BK = ME – MD. (ảnh 1)

Chứng minh rằng:

a) Tứ giác BKEN là hình chữ nhật.

b) BK bằng hiệu khoảng cách từ M đến AC và đến AB (dù M thay đổi trên đường thẳng BC miễn là B nằm giữa M và C) tức là BK = ME – MD.

Xem đáp án » 13/07/2024 7,630

Câu 4:

Cho hình bình hành ABCD. Lấy điểm P trên tia AB sao cho AP = 2AB.

a) Tứ giác BPCD có phải là hình bình hành không? Tại sao?

b) Khi tam giác ABD vuông cân tại A, hãy tính số đo các góc của tứ giác BPCD.

Xem đáp án » 13/07/2024 4,820

Câu 5:

Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?

a) Tứ giác có hai đường chéo bằng nhau là hình bình hành.

b) Tứ giác có hai cặp cạnh bằng nhau là hình bình hành.

c) Tứ giác có ba góc vuông là hình chữ nhật.

d) Tứ giác có ba cạnh bằng nhau là hình thoi.

Xem đáp án » 13/07/2024 2,408

Câu 6:

Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).

Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).   (ảnh 1)

Xem đáp án » 13/07/2024 2,251

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store