Câu hỏi:

13/07/2024 814 Lưu

Bác Mến muốn tính khoảng cách giữa hai vị trí P, Q ở hai bên bờ ao cá. Để làm điều đó, bác Mến chọn ba vị trí A, B, C, thực hiện đo đạc và vẽ mô phỏng như Hình 4.34. Em hãy giúp bác Mến tính khoảng cách giữa hai điểm P và Q.

Bác Mến muốn tính khoảng cách giữa hai vị trí P, Q ở hai bên bờ ao cá. Để làm điều đó, bác Mến chọn ba vị trí A, B, C, thực hiện đo đạc và vẽ mô phỏng như Hình 4.34. Em hãy giúp bác Mến tính khoảng cách giữa hai điểm P và Q.   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

∆ABC có: P là trung điểm AB, Q là trung điểm AC nên PQ là đường trung bình của ∆ABC. Suy ra PQ // BC và PQ = 12BC = 200 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC. a) Chứng minh rằng AE = DF. b) Gọi I là trung điểm của DE. Chứng minh rằng ba điểm B, I, F thẳng hàng. (ảnh 1)

a) ∆ABC có: D là trung điểm AB, E là trung điểm BC, nên DE là đường trung bình của ∆ABC.

Suy ra DE // AC và DE = 12AC.

Xét tứ giác ADEF: DE // AF và DE = AF nên tứ giác ADEF là hình bình hành.

Ta lại có DAF^=90° nên tứ giác ADEF là hình chữ nhật.

Suy ra AE = DF.

b) ∆ABC có: D là trung điểm AB, F là trung điểm AC nên DF là đường trung bình của ∆ABC.

Suy ra DF // BC và DF = 12BC = BE.

Xét tứ giác BDFE: DF // BE và DF = BE nên tứ giác BDFE là hình bình hành.

Suy ra hai đường chéo DE và BF cắt nhau tại trung điểm của mỗi đường.

Ta lại có I là trung điểm của DE nên I cũng là trung điểm của BF.

Vậy B, I, F thẳng hàng.

Lời giải

Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K lần lượt là trung điểm của GB, GC. Chứng minh tứ giác EDKI là hình bình hành. (ảnh 1)

∆ABC có: E là trung điểm AB, D là trung điểm AC nên ED là đường trung bình của ∆ABC. Suy ra ED // BC và ED = 12BC. (1)

∆GBC có: I là trung điểm GC, K là trung điểm GB nên IK là đường trung bình của ∆GBC. Suy ra IK // BC và IK = 12BC. (2)

Từ (1) và (2) suy ra ED // IK và ED = IK nên tứ giác EDKI là hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP