Câu hỏi:

12/07/2024 6,136

Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát un cho bởi công thức sau:

a) un = 2n2 + 1;

b) un = \(\frac{{{{\left( { - 1} \right)}^n}}}{{2n - 1}}\);

c) un = \(\frac{{{2^n}}}{n}\);

d) un = \({\left( {1 + \frac{1}{n}} \right)^n}\).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: 5 số hạng đầu tiên của dãy (un) là: u1 = 2.12 + 1 = 3; u2 = 2.22 + 1 = 9; u3 = 2.32 + 1 = 19; u4 = 2.42 + 1 = 33; u­5 = 2.52 + 1 = 51.

b) Ta có 5 số hạng đầu của dãy un = \(\frac{{{{\left( { - 1} \right)}^n}}}{{2n - 1}}\) là:

\({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{{2.1 - 1}} = \frac{{ - 1}}{1} = 1;{u_2} = \frac{{{{\left( { - 1} \right)}^2}}}{{2.2 - 1}} = \frac{1}{3};{u_3} = \frac{{{{\left( { - 1} \right)}^3}}}{{2.3 - 1}} = \frac{1}{5};{u_4} = \frac{{{{\left( { - 1} \right)}^4}}}{{2.4 - 1}} = \frac{1}{7};{u_5} = \frac{{{{\left( { - 1} \right)}^5}}}{{2.5 - 1}} = - \frac{1}{9}\).

c) Ta có 5 số hàng đầu của dãy un = \(\frac{{{2^n}}}{n}\) là:

u1 = \(\frac{{{2^1}}}{1} = 2\); u2 = \(\frac{{{2^2}}}{1} = 4\); u3 = \(\frac{{{2^3}}}{1} = 8\); u4 = \(\frac{{{2^4}}}{1} = 16\); u5 = \(\frac{{{2^5}}}{1} = 32\).

d) Ta có 5 số hạng đầu của dãy un = \({\left( {1 + \frac{1}{n}} \right)^n}\) là:

u1 = \({\left( {1 + \frac{1}{1}} \right)^1} = 2\); u2 = \({\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\); u3 = \({\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\); u4 = \({\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\); u5 = \({\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau. Lần đầu chị gửi 100 triệu động. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi Pn (triệu đồng) là số tiền chị có trong ngân hàng sau n tháng.

a) Tính số tiền chị có trong ngân hàng sau 1 tháng.

b) Tính số tiền chị có trong ngân hàng sau 3 tháng.

c) Dự đoán công thức của Pn tính theo n.

Xem đáp án » 11/07/2024 15,054

Câu 2:

Xét tính tăng, giảm của mỗi dãy số (un), biết:

a) \({u_n} = \frac{{n - 3}}{{n + 2}}\);

b) \({u_n} = \frac{{{3^n}}}{{{2^n}.n!}}\);

c) un = (– 1)n.(2n + 1).

Xem đáp án » 12/07/2024 12,224

Câu 3:

Trong các dãy số (un) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n2 + 2;

b) un = – 2n + 1;

c) \({u_n} = \frac{1}{{{n^2} + n}}\).

Xem đáp án » 12/07/2024 12,216

Câu 4:

a) Gọi un là số chấm ở hàng thứ n trong Hình 1. Dự đoán công thức số hạng tổng quát cho dãy số (un).

b) Gọi vn là tổng diện tích của các hình tô màu ở hàng thứ n trong Hình 2 (mỗi ô vuông nhỏ là một đơn vị diện tích). Dự đoán công thức của số hạng tổng quát cho dãy số (vn).

Media VietJack

Xem đáp án » 12/07/2024 7,038

Câu 5:

Chứng minh rằng dãy số (un) với \({u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}}\) là bị chặn.

Xem đáp án » 12/07/2024 3,915

Câu 6:

Cho dãy số thực dương (un). Chứng minh rằng dãy số (un) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi n *.

Xem đáp án » 12/07/2024 3,211

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn